Commit b7530e26935afb3b75313d776f3795b5b4b2ecb7
1 parent
29644ae6c3
Exists in
master
allow you to plot count matrix. For each cluster, the number of element belongin…
…g to each class is plot into a matrix.
Showing 1 changed file with 106 additions and 0 deletions Side-by-side Diff
bin/plot-count-matrix.py
1 | +''' | |
2 | +This script aims to plot matrix count. | |
3 | +''' | |
4 | +import argparse | |
5 | +import numpy as np | |
6 | +from data import read_file, index_by_id | |
7 | +from sklearn import preprocessing | |
8 | +import matplotlib.pyplot as plt | |
9 | + | |
10 | + | |
11 | +# TODO: Avoir la liste des personnages | |
12 | +# TODO: liste des clusters | |
13 | +parser = argparse.ArgumentParser(description="Plot count matrix") | |
14 | +parser.add_argument("clustering", type=str, | |
15 | + help="clustering file") | |
16 | +parser.add_argument("classlst", type=str, | |
17 | + help="List used for its classes.") | |
18 | +parser.add_argument("lst", type=str, | |
19 | + help="list") | |
20 | +parser.add_argument("--outfile", type=str, default="out.pdf", | |
21 | + help="output file path") | |
22 | + | |
23 | +args = parser.parse_args() | |
24 | +CLUSTERING = args.clustering | |
25 | +CLASS_LST = args.classlst | |
26 | +LST = args.lst | |
27 | +OUTFILE = args.outfile | |
28 | + | |
29 | +# -- READ FILES | |
30 | +clustering = read_file(CLUSTERING) | |
31 | +clustering_ind = index_by_id(clustering) | |
32 | + | |
33 | +class_lst = read_file(CLASS_LST) | |
34 | +class_lst_ind = index_by_id(class_lst) | |
35 | + | |
36 | +lst = read_file(LST) | |
37 | + | |
38 | +# -- GET CLASSES AND CLUSTERS | |
39 | +classes = np.asarray([class_lst_ind[x[0][0]][x[0][3]][0][1] for x in lst]) | |
40 | +clusters = np.asarray([clustering_ind[x[0][0]][x[0][3]][0][1] for x in lst]) | |
41 | + | |
42 | +def generate_count_matrix(classes, clusters): | |
43 | + ''' | |
44 | + Generate matrices for the given set | |
45 | + Lines are clusters and columns are classes. | |
46 | + A cell is contains the number of character occurence | |
47 | + on a specific cluster. | |
48 | + ''' | |
49 | + | |
50 | + # Index Classes | |
51 | + classe_unique = np.unique(classes) | |
52 | + #all_classes = np.unique(np.concatenate((classe_unique))) | |
53 | + all_classes = classe_unique | |
54 | + | |
55 | + # Label Encoder for classes | |
56 | + le = preprocessing.LabelEncoder() | |
57 | + le.fit(all_classes) | |
58 | + | |
59 | + # Index | |
60 | + cluster_unique = np.unique(clusters) | |
61 | + | |
62 | + #all_clusters = np.unique(np.concatenate((cluster_unique))) | |
63 | + all_clusters = cluster_unique | |
64 | + # Create matrix lin(clust) col(class) | |
65 | + counts_matrix = np.zeros((np.max(np.asarray(all_clusters, dtype=np.int)) + 1, len(all_classes))) | |
66 | + | |
67 | + for cluster in all_clusters: | |
68 | + | |
69 | + # Il faut d'abord extraire les classes présentes dans ce cluster | |
70 | + cc = np.extract(np.asarray(clusters) == cluster, np.asarray(classes)) | |
71 | + | |
72 | + cc_unique, cc_counts = np.unique(cc, return_counts=True) | |
73 | + cc_ind = dict(zip(cc_unique, cc_counts)) | |
74 | + | |
75 | + for class_ in all_classes: | |
76 | + class_id = le.transform([class_])[0] | |
77 | + if class_ in cc_ind: | |
78 | + counts_matrix[int(cluster)][int(class_id)] = cc_ind[class_] | |
79 | + return (counts_matrix, all_classes, all_clusters) | |
80 | + | |
81 | +count_matrix, all_classes, all_clusters = generate_count_matrix(classes, clusters) | |
82 | + | |
83 | +fig, ax = plt.subplots() | |
84 | +fig.set_size_inches(10, len(all_clusters) + 1) | |
85 | +im = ax.imshow(count_matrix) | |
86 | + | |
87 | +ax.set_xticks(np.arange(len(all_classes))) | |
88 | +ax.set_yticks(np.arange(len(all_clusters))) | |
89 | + | |
90 | +ax.set_xticklabels(all_classes) | |
91 | +ax.set_yticklabels(all_clusters) | |
92 | + | |
93 | +fig.colorbar(im, ax=ax) | |
94 | + | |
95 | +plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") | |
96 | + | |
97 | +# Loop over data dimensions and create text annotations. | |
98 | +for i in range(count_matrix.shape[0]): | |
99 | + for j in range(count_matrix.shape[1]): | |
100 | + text = ax.text(j, i, int(count_matrix[i, j]), | |
101 | + ha="center", va="center", color="w") | |
102 | + | |
103 | + | |
104 | +ax.set_title("Count Matrix") | |
105 | +fig.tight_layout() | |
106 | +plt.savefig(OUTFILE, bbox_inches='tight') |