Blame view
scripts/evaluations/clustering.py
8.04 KB
e403ed5fb Add a script that... |
1 2 3 4 5 6 7 8 9 |
''' This script allows the user to evaluate a classification system on new labels using clustering methods. The algorithms are applied on the given latent space (embedding). ''' import argparse import numpy as np import pandas as pd import os import time |
adbca3b1c Save the kmeans m... |
10 |
import pickle |
4ed3ebc7d Save results on a... |
11 |
import csv |
e403ed5fb Add a script that... |
12 13 |
from sklearn.preprocessing import LabelEncoder from sklearn.metrics.pairwise import pairwise_distances |
e403ed5fb Add a script that... |
14 15 |
from sklearn.cluster import KMeans from sklearn.manifold import TSNE |
4ed3ebc7d Save results on a... |
16 |
from sklearn.metrics import f1_score, homogeneity_score, completeness_score, v_measure_score |
e403ed5fb Add a script that... |
17 18 19 |
import matplotlib.pyplot as plt from volia.data_io import read_features,read_lst |
15b183a24 Add purity measur... |
20 |
from volia.measures import entropy_score, purity_score |
e403ed5fb Add a script that... |
21 |
|
4ed3ebc7d Save results on a... |
22 23 24 25 26 |
''' TODO: - Add an option allowing the user to choose the number of clustering to train in order to compute the average and the ''' |
e403ed5fb Add a script that... |
27 |
|
e403ed5fb Add a script that... |
28 |
|
4ed3ebc7d Save results on a... |
29 30 |
def train_clustering(label_encoder, feats, classes, outdir): num_classes = len(label_encoder.classes_) |
e403ed5fb Add a script that... |
31 32 33 34 35 36 37 38 39 40 |
# Compute KMEANS clustering on data estimator = KMeans( n_clusters=num_classes, n_init=100, tol=10-6, algorithm="elkan" ) estimator.fit(feats) print(f"Kmeans: processed {estimator.n_iter_} iterations - intertia={estimator.inertia_}") |
4ed3ebc7d Save results on a... |
41 |
with open(os.path.join(outdir, f"_kmeans.pkl"), "wb") as f: |
adbca3b1c Save the kmeans m... |
42 43 |
pickle.dump(estimator, f) |
e403ed5fb Add a script that... |
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# contains distance to each cluster for each sample dist_space = estimator.transform(feats) predictions = np.argmin(dist_space, axis=1) # gives each cluster a name (considering most represented character) dataframe = pd.DataFrame({ "label": pd.Series(list(map(lambda x: le.classes_[x], labels))), "prediction": pd.Series(predictions) }) def find_cluster_name_fn(c): mask = dataframe["prediction"] == c return dataframe[mask]["label"].value_counts(sort=False).idxmax() cluster_names = list(map(find_cluster_name_fn, range(num_classes))) predicted_labels = le.transform( [cluster_names[pred] for pred in predictions]) # F-measure fscores = f1_score(labels, predicted_labels, average=None) fscores_str = " ".join(map(lambda i: "{0:25s}: {1:.4f}".format(le.classes_[i], fscores[i]), range(len(fscores)))) |
4ed3ebc7d Save results on a... |
66 67 68 69 70 71 72 73 74 75 76 77 |
# Entropy _, _, entropy = entropy_score(labels, predicted_labels) # Homogenity homogeneity = homogeneity_score(labels, predicted_labels) # Completeness completeness = completeness_score(labels, predicted_labels) # V-Measure v_measure = v_measure_score(labels, predicted_labels) |
15b183a24 Add purity measur... |
78 79 80 81 82 |
# Purity purity_scores = purity_score(labels, predicted_labels) purity_class_score = purity_scores["purity_class_score"] purity_cluster_score = purity_scores["purity_cluster_score"] K = purity_scores["K"] |
4ed3ebc7d Save results on a... |
83 84 |
# Write results with open(os.path.join(outdir, f"_" + args.prefix + "eval_clustering.log"), "w") as fd: |
e403ed5fb Add a script that... |
85 86 |
print(f"F1-scores for each classes: {fscores_str}", file=fd) |
4ed3ebc7d Save results on a... |
87 |
print(f"Entropy: {entropy}", file=fd) |
e403ed5fb Add a script that... |
88 |
print(f"Global score : {np.mean(fscores)}", file=fd) |
4ed3ebc7d Save results on a... |
89 90 91 |
print(f"Homogeneity: {homogeneity}", file=fd) print(f"completeness: {completeness}", file=fd) print(f"v-measure: {v_measure}", file=fd) |
15b183a24 Add purity measur... |
92 93 94 |
print(f"purity class score: {purity_class_score}", file=fd) print(f"purity cluster score: {purity_cluster_score}", file=fd) print(f"purity overall evaluation criterion (K): {K}", file=fd) |
4ed3ebc7d Save results on a... |
95 |
|
e403ed5fb Add a script that... |
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# Process t-SNE and plot tsne_estimator = TSNE() embeddings = tsne_estimator.fit_transform(feats) print("t-SNE: processed {0} iterations - KL_divergence={1:.4f}".format( tsne_estimator.n_iter_, tsne_estimator.kl_divergence_)) fig, [axe1, axe2] = plt.subplots(1, 2, figsize=(10, 5)) for c, name in enumerate(le.classes_): c_mask = np.where(labels == c) axe1.scatter(embeddings[c_mask][:, 0], embeddings[c_mask][:, 1], label=name, alpha=0.2, edgecolors=None) try: id_cluster = cluster_names.index(name) except ValueError: print("WARNING: no cluster found for {}".format(name)) continue c_mask = np.where(predictions == id_cluster) axe2.scatter(embeddings[c_mask][:, 0], embeddings[c_mask][:, 1], label=name, alpha=0.2, edgecolors=None) axe1.legend(loc="lower center", bbox_to_anchor=(0.5, -0.35)) axe1.set_title("true labels") axe2.legend(loc="lower center", bbox_to_anchor=(0.5, -0.35)) axe2.set_title("predicted cluster label") plt.suptitle("Kmeans Clustering") loc = os.path.join( |
4ed3ebc7d Save results on a... |
123 |
outdir, |
e403ed5fb Add a script that... |
124 125 126 127 128 129 130 131 |
args.prefix + "kmeans.pdf" ) plt.savefig(loc, bbox_inches="tight") plt.close() print("INFO: figure saved at {}".format(loc)) end = time.time() |
4ed3ebc7d Save results on a... |
132 133 134 135 136 137 |
print("program ended in {0:.2f} seconds".format(end-start)) return { "f1": np.mean(fscores), "entropy": entropy, "homogeneity": homogeneity, "completeness": completeness, |
15b183a24 Add purity measur... |
138 139 140 141 |
"v-measure": v_measure, "purity_class_score": purity_class_score, "purity_cluster score": purity_cluster_score, "K": K |
4ed3ebc7d Save results on a... |
142 |
} |
15b183a24 Add purity measur... |
143 |
|
4ed3ebc7d Save results on a... |
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
if __name__ == "__main__": # Argparse parser = argparse.ArgumentParser("Compute clustering on a latent space") parser.add_argument("features") parser.add_argument("utt2", type=str, help="file with [utt] [value]") parser.add_argument("--idsfrom", type=str, default="utt2", choices=[ "features", "utt2" ], help="from features or from utt2?") parser.add_argument("--prefix", default="", type=str, help="prefix of saved files") parser.add_argument("--outdir", default=None, type=str, help="Output directory") parser.add_argument("--nmodels", type=int, default=1, help="specifies the number of models to train") args = parser.parse_args() assert args.outdir start = time.time() # Load features and utt2 features = read_features(args.features) utt2 = read_lst(args.utt2) # Take id list if args.idsfrom == "features": ids = list(features.keys()) elif args.idsfrom == "utt2": ids = list(utt2.keys()) else: print(f"idsfrom is not good: {args.idsfrom}") exit(1) feats = np.vstack([ features[id_] for id_ in ids ]) classes = [ utt2[id_] for id_ in ids ] # Encode labels le = LabelEncoder() labels = le.fit_transform(classes) measures = {} for i in range(1, args.nmodels+1): subdir = os.path.join(args.outdir, str(i)) if not os.path.exists(subdir): os.mkdir(subdir) print(f"[{i}/{args.nmodels}] => {subdir}") results = train_clustering(le, feats, classes, subdir) for key, value in results.items(): if key not in measures: measures[key] = [] measures[key].append(results[key]) # File with results file_results = os.path.join(args.outdir, "clustering_measures.txt") with open(file_results, "w") as f: f.write(f"[nmodels: {args.nmodels}] ") for key in measures.keys(): values = np.asarray(measures[key], dtype=float) mean = np.mean(values) std = np.std(values) f.write(f"[{key} => mean: {mean}, std: {std}] ") # CSV File with all the values file_csv_measures = os.path.join(args.outdir, "clustering_measures.csv") with open(file_csv_measures, "w", newline="") as f: writer = csv.writer(f, delimiter=",") writer.writerow(["measure"] + list(range(1, args.nmodels+1)) + ["mean"] + ["std"]) for key in measures.keys(): values = np.asarray(measures[key], dtype=float) mean = np.mean(values) std = np.std(values) writer.writerow([key] + list(values) + [mean] + [std]) |