Commit e403ed5fb6202dae56d47815d5961cced00f1c85
1 parent
11ee97e2cc
Exists in
master
Add a script that allow user to evaluate a representation using classification labels.
Showing 1 changed file with 126 additions and 0 deletions Side-by-side Diff
scripts/evaluations/clustering.py
1 | +''' | |
2 | +This script allows the user to evaluate a classification system on new labels using clustering methods. | |
3 | +The algorithms are applied on the given latent space (embedding). | |
4 | +''' | |
5 | +import argparse | |
6 | +import numpy as np | |
7 | +import pandas as pd | |
8 | +import os | |
9 | +import time | |
10 | +from sklearn.preprocessing import LabelEncoder | |
11 | +from sklearn.metrics.pairwise import pairwise_distances | |
12 | +from sklearn.metrics import f1_score | |
13 | +from sklearn.cluster import KMeans | |
14 | +from sklearn.manifold import TSNE | |
15 | +import matplotlib.pyplot as plt | |
16 | + | |
17 | +from volia.data_io import read_features,read_lst | |
18 | + | |
19 | +if __name__ == "__main__": | |
20 | + # Argparse | |
21 | + parser = argparse.ArgumentParser("Compute clustering on a latent space") | |
22 | + parser.add_argument("features") | |
23 | + parser.add_argument("utt2", | |
24 | + type=str, | |
25 | + help="file with [utt] [value]") | |
26 | + parser.add_argument("--prefix", | |
27 | + type=str, | |
28 | + help="prefix of saved files") | |
29 | + parser.add_argument("--outdir", | |
30 | + default=None, | |
31 | + type=str, | |
32 | + help="Output directory") | |
33 | + | |
34 | + args = parser.parse_args() | |
35 | + | |
36 | + assert args.outdir | |
37 | + | |
38 | + start = time.time() | |
39 | + | |
40 | + # Load features and utt2 | |
41 | + features = read_features(args.features) | |
42 | + utt2 = read_lst(args.utt2) | |
43 | + | |
44 | + ids = list(features.keys()) | |
45 | + feats = np.vstack([ features[id_] for id_ in ids ]) | |
46 | + classes = [ utt2[id_] for id_ in ids ] | |
47 | + | |
48 | + # Encode labels | |
49 | + le = LabelEncoder() | |
50 | + labels = le.fit_transform(classes) | |
51 | + num_classes = len(le.classes_) | |
52 | + | |
53 | + # Compute KMEANS clustering on data | |
54 | + estimator = KMeans( | |
55 | + n_clusters=num_classes, | |
56 | + n_init=100, | |
57 | + tol=10-6, | |
58 | + algorithm="elkan" | |
59 | + ) | |
60 | + estimator.fit(feats) | |
61 | + print(f"Kmeans: processed {estimator.n_iter_} iterations - intertia={estimator.inertia_}") | |
62 | + | |
63 | + # contains distance to each cluster for each sample | |
64 | + dist_space = estimator.transform(feats) | |
65 | + predictions = np.argmin(dist_space, axis=1) | |
66 | + | |
67 | + # gives each cluster a name (considering most represented character) | |
68 | + dataframe = pd.DataFrame({ | |
69 | + "label": pd.Series(list(map(lambda x: le.classes_[x], labels))), | |
70 | + "prediction": pd.Series(predictions) | |
71 | + }) | |
72 | + | |
73 | + def find_cluster_name_fn(c): | |
74 | + mask = dataframe["prediction"] == c | |
75 | + return dataframe[mask]["label"].value_counts(sort=False).idxmax() | |
76 | + | |
77 | + cluster_names = list(map(find_cluster_name_fn, range(num_classes))) | |
78 | + predicted_labels = le.transform( | |
79 | + [cluster_names[pred] for pred in predictions]) | |
80 | + | |
81 | + # F-measure | |
82 | + fscores = f1_score(labels, predicted_labels, average=None) | |
83 | + fscores_str = "\n".join(map(lambda i: "{0:25s}: {1:.4f}".format(le.classes_[i], fscores[i]), range(len(fscores)))) | |
84 | + print(f"F1-scores for each classes:\n{fscores_str}") | |
85 | + print(f"Global score : {np.mean(fscores)}") | |
86 | + with open(os.path.join(args.outdir, args.prefix + "eval_clustering.log"), "w") as fd: | |
87 | + print(f"F1-scores for each classes:\n{fscores_str}", file=fd) | |
88 | + print(f"Global score : {np.mean(fscores)}", file=fd) | |
89 | + | |
90 | + # Process t-SNE and plot | |
91 | + tsne_estimator = TSNE() | |
92 | + embeddings = tsne_estimator.fit_transform(feats) | |
93 | + print("t-SNE: processed {0} iterations - KL_divergence={1:.4f}".format( | |
94 | + tsne_estimator.n_iter_, tsne_estimator.kl_divergence_)) | |
95 | + | |
96 | + fig, [axe1, axe2] = plt.subplots(1, 2, figsize=(10, 5)) | |
97 | + for c, name in enumerate(le.classes_): | |
98 | + c_mask = np.where(labels == c) | |
99 | + axe1.scatter(embeddings[c_mask][:, 0], embeddings[c_mask][:, 1], label=name, alpha=0.2, edgecolors=None) | |
100 | + | |
101 | + try: | |
102 | + id_cluster = cluster_names.index(name) | |
103 | + except ValueError: | |
104 | + print("WARNING: no cluster found for {}".format(name)) | |
105 | + continue | |
106 | + c_mask = np.where(predictions == id_cluster) | |
107 | + axe2.scatter(embeddings[c_mask][:, 0], embeddings[c_mask][:, 1], label=name, alpha=0.2, edgecolors=None) | |
108 | + | |
109 | + axe1.legend(loc="lower center", bbox_to_anchor=(0.5, -0.35)) | |
110 | + axe1.set_title("true labels") | |
111 | + axe2.legend(loc="lower center", bbox_to_anchor=(0.5, -0.35)) | |
112 | + axe2.set_title("predicted cluster label") | |
113 | + | |
114 | + plt.suptitle("Kmeans Clustering") | |
115 | + | |
116 | + loc = os.path.join( | |
117 | + args.outdir, | |
118 | + args.prefix + "kmeans.pdf" | |
119 | + ) | |
120 | + plt.savefig(loc, bbox_inches="tight") | |
121 | + plt.close() | |
122 | + | |
123 | + print("INFO: figure saved at {}".format(loc)) | |
124 | + | |
125 | + end = time.time() | |
126 | + print("program ended in {0:.2f} seconds".format(end-start)) |