Blame view
receipts/clustering_example.sh
1.21 KB
957896bc9 Adding an example... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
# Don't forget to install volia before or to run it in volia root directory. # You can uncomment "debug" flag parameter to see print dedicated to the debug. # Example k-means with (default) euclidian distance python -m volia.clustering \ --features "example/feats_example.txt" \ --lst "example/example.lst" \ -k 4 \ --output "tests/kmeans_on_example.pkl" \ #--debug python -m volia.clustering measure \ --measure "entropy" "v-measure" "homogeneity" "completeness" "purity" \ --features "example/feats_example.txt" \ --lst "example/example.lst" \ --truelabels "example/utt2grp_example" \ --model "tests/kmeans_on_example.pkl" \ --modeltype "k-means" # Example k-means with mahalanobis distance python -m volia.clustering kmeans \ --features "example/feats_example.txt" \ --lst "example/example.lst" \ -k 4 \ --output "tests/kmeans_mahalanobis_on_example.pkl" \ --mahalanobis #-- debug python -m volia.clustering measure \ --measure "entropy" "v-measure" "homogeneity" "completeness" "purity" \ --features "example/feats_example.txt" \ --lst "example/example.lst" \ --truelabels "example/utt2grp_example" \ --model "kmeans_mahalanobis_on_example.pkl" \ --modeltype "k-means-mahalanobis" |