clustering_example.sh
1.21 KB
# Don't forget to install volia before or to run it in volia root directory.
# You can uncomment "debug" flag parameter to see print dedicated to the debug.
# Example k-means with (default) euclidian distance
python -m volia.clustering \
--features "example/feats_example.txt" \
--lst "example/example.lst" \
-k 4 \
--output "tests/kmeans_on_example.pkl" \
#--debug
python -m volia.clustering measure \
--measure "entropy" "v-measure" "homogeneity" "completeness" "purity" \
--features "example/feats_example.txt" \
--lst "example/example.lst" \
--truelabels "example/utt2grp_example" \
--model "tests/kmeans_on_example.pkl" \
--modeltype "k-means"
# Example k-means with mahalanobis distance
python -m volia.clustering kmeans \
--features "example/feats_example.txt" \
--lst "example/example.lst" \
-k 4 \
--output "tests/kmeans_mahalanobis_on_example.pkl" \
--mahalanobis
#-- debug
python -m volia.clustering measure \
--measure "entropy" "v-measure" "homogeneity" "completeness" "purity" \
--features "example/feats_example.txt" \
--lst "example/example.lst" \
--truelabels "example/utt2grp_example" \
--model "kmeans_mahalanobis_on_example.pkl" \
--modeltype "k-means-mahalanobis"