clustering.py
9.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import argparse
from os import path, mkdir
from utils import SubCommandRunner
from core.data import read_features, read_lst, read_labels, write_line
import numpy as np
from sklearn.cluster import KMeans
import pickle
from clustering_modules.kmeans import kmeans
from clustering_modules.kmeans_mahalanobis import kmeansMahalanobis
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import v_measure_score, homogeneity_score, completeness_score
import core.measures
import json
CLUSTERING_METHODS = {
"k-means": kmeans(),
"k-means-mahalanobis": kmeansMahalanobis(),
"k-means-mahalanobis-constrained": kmeansMahalanobis(constrained=True)
}
EVALUATION_METHODS = {
"entropy": core.measures.entropy_score,
"purity": core.measures.purity_score,
"v-measure": v_measure_score,
"homogeneity": homogeneity_score,
"completeness": completeness_score,
}
def disequilibrium_run():
pass
def measure_run(measure: str, features: str, lst: str, truelabels: str, model: str, modeltype: str):
"""
@param measure:
@param features:
@param lst:
@param truelabels:
@param model:
@param modeltype:
@return:
"""
module = CLUSTERING_METHODS[modeltype]
module.load(model)
eval = {}
for ms in measure:
evaluation = EVALUATION_METHODS[ms]
feats_dict = read_features(features)
labels_dict = read_labels(truelabels)
lst_dict = read_lst(lst)
lst_keys = [key for key in lst_dict]
feats = np.asarray([feats_dict[key] for key in lst_keys])
Y_pred = module.predict(feats)
Y_truth = [labels_dict[key][0] for key in lst_keys]
le = LabelEncoder()
le.fit(Y_truth)
Y_truth = le.transform(Y_truth)
eval[ms] = evaluation(Y_truth, Y_pred)
print(json.dumps(eval))
def kmeans_run(features: str,
lst: str,
k:int,
kmax: int,
klist,
maxiter: int,
ninit: int,
output: str,
tol: float,
debug: bool = False,
mahalanobis: str = False):
"""
@param features: output features
@param lst: list file
@param k: k (kmin if kmax specified)
@param kmax: maximum k to compute
@param klist: list of k values to compute, ignore k value
@param output: output file if kmax not specified, else, output directory
@param mahalanobis: distance option of k-means.
"""
json_content = locals().copy()
def fit_model(k: int, output_file):
if debug:
print(f"Computing clustering with k={k}")
model = CLUSTERING_METHODS["k-means"]
if mahalanobis:
if debug:
print("Mahalanobis activated")
model = CLUSTERING_METHODS["k-means-mahalanobis"]
model.fit(X, k, tol, ninit, maxiter, debug)
model.save(output_file)
json_content["models"].append({
"model_file": output_file,
"k": k,
})
json_content["models"] = []
# -- READ FILES --
features_dict = read_features(features)
lst_dict = read_lst(lst)
X = np.asarray([features_dict[x] for x in lst_dict])
# Exception cases
if kmax is None and klist is None and path.isdir(output):
raise Exception("The \"output\" is an existing directory while the system is waiting the path of a file.")
if (kmax is not None or klist is not None) and path.isfile(output):
raise Exception("The \"output\" is an existing file while the system is waiting the path of a directory.")
# Mono value case
if kmax is None and klist is None:
fit_model(k, output)
# Multi values case with kmax
if kmax is not None:
if not path.isdir(output):
mkdir(output)
Ks = range(k, kmax + 1)
for i in Ks:
fit_model(i, path.join(output, "clustering_" + str(i) + ".pkl"))
# Second multi values case with klist
if klist is not None:
if not path.isdir(output):
mkdir(output)
for k in klist:
k = int(k)
fit_model(k, path.join(output, "clustering_" + str(k) + ".pkl"))
print(json.dumps(json_content))
def extract_run(features, lst, model, modeltype, outfile):
feats_dict = read_features(features)
lst_dict = read_lst(lst)
lst_keys = [key for key in lst_dict]
feats = np.asarray([feats_dict[key] for key in lst_keys])
module = CLUSTERING_METHODS[modeltype]
module.load(model)
Y_pred = module.predict(feats)
with open(outfile, "w") as f:
for i, key in enumerate(lst_keys):
write_line(key, Y_pred[i], f)
json_output = {
"outfile": outfile
}
print(json.dumps(json_output))
if __name__ == "__main__":
# Main parser
parser = argparse.ArgumentParser(description="Clustering methods to apply")
subparsers = parser.add_subparsers(title="action")
# kmeans
parser_kmeans = subparsers.add_parser(
"kmeans", help="Compute clustering using k-means algorithm")
parser_kmeans.add_argument("--features", required=True, type=str, help="Features file (works with list)")
parser_kmeans.add_argument("--lst", required=True, type=str, help="List file (.lst)")
parser_kmeans.add_argument("-k", default=2, type=int,
help="number of clusters to compute. It is kmin if kmax is specified.")
parser_kmeans.add_argument("--kmax", default=None, type=int, help="if specified, k is kmin.")
parser_kmeans.add_argument("--klist", nargs="+",
help="List of k values to test. As kmax, activate the multi values mod.")
parser_kmeans.add_argument("--maxiter",
type=int,
default=300,
help="Max number of iteration before stoping if not converging")
parser_kmeans.add_argument("--ninit",
type=int,
default=10,
help="Number of time the k-means algorithm will be run with different centroid seeds.")
parser_kmeans.add_argument("--tol",
type=float,
default=0.0001,
help="Tolerance to finish of distance between centroids and their updates.")
parser_kmeans.add_argument("--debug", action="store_true")
parser_kmeans.add_argument("--output",
default=".kmeans",
help="output file if only k. Output directory if multiple kmax specified.")
parser_kmeans.add_argument("--mahalanobis", action="store_true")
parser_kmeans.set_defaults(which="kmeans")
# measure
parser_measure = subparsers.add_parser(
"measure", help="compute the entropy")
parser_measure.add_argument("--measure",
required=True,
nargs="+",
choices=[key for key in EVALUATION_METHODS],
help="...")
parser_measure.add_argument("--features", required=True, type=str, help="...")
parser_measure.add_argument("--lst", required=True, type=str, help="...")
parser_measure.add_argument("--truelabels", required=True, type=str, help="...")
parser_measure.add_argument("--model", required=True, type=str, help="...")
parser_measure.add_argument("--modeltype",
required=True,
choices=[key for key in CLUSTERING_METHODS],
help="type of model for learning")
parser_measure.set_defaults(which="measure")
# disequilibrium
parser_disequilibrium = subparsers.add_parser(
"disequilibrium", help="...")
parser_disequilibrium.add_argument("--features", required=True, type=str, help="...")
parser_disequilibrium.add_argument("--lstrain", required=True, type=str, help="...")
parser_disequilibrium.add_argument("--lstest", required=True, type=str, help="...")
parser_disequilibrium.add_argument("--model", required=True, type=str, help="...")
parser_disequilibrium.add_argument("--model-type",
required=True,
choices=["kmeans", "2", "3"],
help="...")
parser_disequilibrium.set_defaults(which="disequilibrium")
# Extract
parser_extract = subparsers.add_parser(
"extract", help="extract cluster labels")
parser_extract.add_argument("--features", required=True, type=str, help="...")
parser_extract.add_argument("--lst", required=True, type=str, help="...")
parser_extract.add_argument("--model", required=True, type=str, help="...")
parser_extract.add_argument("--modeltype",
required=True,
choices=[key for key in CLUSTERING_METHODS],
help="type of model for learning")
parser_extract.add_argument("--outfile", required=True, type=str, help="...")
parser_extract.set_defaults(which="extract")
# Parse
args = parser.parse_args()
# Run commands
runner = SubCommandRunner({
"kmeans": kmeans_run,
"measure": measure_run,
"disequilibrium": disequilibrium_run,
"extract": extract_run
})
runner.run(args.which, args.__dict__, remove="which")