clustering.py
8.07 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
'''
This script allows the user to evaluate a classification system on new labels using clustering methods.
The algorithms are applied on the given latent space (embedding).
'''
import argparse
import numpy as np
import pandas as pd
import os
import time
import pickle
import csv
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.metrics import f1_score, homogeneity_score, completeness_score, v_measure_score
import matplotlib.pyplot as plt
from volia.data_io import read_features,read_lst
from volia.measures import entropy_score, purity_score
'''
TODO:
- Add an option allowing the user to choose the number of
clustering to train in order to compute the average and the
'''
def train_clustering(label_encoder, feats, classes, outdir):
num_classes = len(label_encoder.classes_)
# Compute KMEANS clustering on data
estimator = KMeans(
n_clusters=num_classes,
n_init=100,
tol=10-6,
algorithm="elkan"
)
estimator.fit(feats)
print(f"Kmeans: processed {estimator.n_iter_} iterations - intertia={estimator.inertia_}")
with open(os.path.join(outdir, f"{args.prefix}kmeans.pkl"), "wb") as f:
pickle.dump(estimator, f)
# contains distance to each cluster for each sample
dist_space = estimator.transform(feats)
predictions = np.argmin(dist_space, axis=1)
# gives each cluster a name (considering most represented character)
dataframe = pd.DataFrame({
"label": pd.Series(list(map(lambda x: le.classes_[x], labels))),
"prediction": pd.Series(predictions)
})
def find_cluster_name_fn(c):
mask = dataframe["prediction"] == c
return dataframe[mask]["label"].value_counts(sort=False).idxmax()
cluster_names = list(map(find_cluster_name_fn, range(num_classes)))
predicted_labels = le.transform(
[cluster_names[pred] for pred in predictions])
# F-measure
fscores = f1_score(labels, predicted_labels, average=None)
fscores_str = "\n".join(map(lambda i: "{0:25s}: {1:.4f}".format(le.classes_[i], fscores[i]), range(len(fscores))))
# Entropy
_, _, entropy = entropy_score(labels, predicted_labels)
# Homogenity
homogeneity = homogeneity_score(labels, predicted_labels)
# Completeness
completeness = completeness_score(labels, predicted_labels)
# V-Measure
v_measure = v_measure_score(labels, predicted_labels)
# Purity
purity_scores = purity_score(labels, predicted_labels)
purity_class_score = purity_scores["purity_class_score"]
purity_cluster_score = purity_scores["purity_cluster_score"]
K = purity_scores["K"]
# Write results
with open(os.path.join(outdir, args.prefix + "eval_clustering.log"), "w") as fd:
print(f"F1-scores for each classes:\n{fscores_str}", file=fd)
print(f"Entropy: {entropy}", file=fd)
print(f"Global score : {np.mean(fscores)}", file=fd)
print(f"Homogeneity: {homogeneity}", file=fd)
print(f"completeness: {completeness}", file=fd)
print(f"v-measure: {v_measure}", file=fd)
print(f"purity class score: {purity_class_score}", file=fd)
print(f"purity cluster score: {purity_cluster_score}", file=fd)
print(f"purity overall evaluation criterion (K): {K}", file=fd)
# Process t-SNE and plot
tsne_estimator = TSNE()
embeddings = tsne_estimator.fit_transform(feats)
print("t-SNE: processed {0} iterations - KL_divergence={1:.4f}".format(
tsne_estimator.n_iter_, tsne_estimator.kl_divergence_))
fig, [axe1, axe2] = plt.subplots(1, 2, figsize=(10, 5))
for c, name in enumerate(le.classes_):
c_mask = np.where(labels == c)
axe1.scatter(embeddings[c_mask][:, 0], embeddings[c_mask][:, 1], label=name, alpha=0.2, edgecolors=None)
try:
id_cluster = cluster_names.index(name)
except ValueError:
print("WARNING: no cluster found for {}".format(name))
continue
c_mask = np.where(predictions == id_cluster)
axe2.scatter(embeddings[c_mask][:, 0], embeddings[c_mask][:, 1], label=name, alpha=0.2, edgecolors=None)
axe1.legend(loc="lower center", bbox_to_anchor=(0.5, -0.35))
axe1.set_title("true labels")
axe2.legend(loc="lower center", bbox_to_anchor=(0.5, -0.35))
axe2.set_title("predicted cluster label")
plt.suptitle("Kmeans Clustering")
loc = os.path.join(
outdir,
args.prefix + "kmeans.pdf"
)
plt.savefig(loc, bbox_inches="tight")
plt.close()
print("INFO: figure saved at {}".format(loc))
end = time.time()
print("program ended in {0:.2f} seconds".format(end-start))
return {
"f1": np.mean(fscores),
"entropy": entropy,
"homogeneity": homogeneity,
"completeness": completeness,
"v-measure": v_measure,
"purity_class_score": purity_class_score,
"purity_cluster score": purity_cluster_score,
"K": K
}
if __name__ == "__main__":
# Argparse
parser = argparse.ArgumentParser("Compute clustering on a latent space")
parser.add_argument("features")
parser.add_argument("utt2",
type=str,
help="file with [utt] [value]")
parser.add_argument("--idsfrom",
type=str,
default="utt2",
choices=[
"features",
"utt2"
],
help="from features or from utt2?")
parser.add_argument("--prefix",
default="",
type=str,
help="prefix of saved files")
parser.add_argument("--outdir",
default=None,
type=str,
help="Output directory")
parser.add_argument("--nmodels",
type=int,
default=1,
help="specifies the number of models to train")
args = parser.parse_args()
assert args.outdir
start = time.time()
# Load features and utt2
features = read_features(args.features)
utt2 = read_lst(args.utt2)
# Take id list
if args.idsfrom == "features":
ids = list(features.keys())
elif args.idsfrom == "utt2":
ids = list(utt2.keys())
else:
print(f"idsfrom is not good: {args.idsfrom}")
exit(1)
feats = np.vstack([ features[id_] for id_ in ids ])
classes = [ utt2[id_] for id_ in ids ]
# Encode labels
le = LabelEncoder()
labels = le.fit_transform(classes)
measures = {}
for i in range(1, args.nmodels+1):
subdir = os.path.join(args.outdir, str(i))
if not os.path.exists(subdir):
os.mkdir(subdir)
print(f"[{i}/{args.nmodels}] => {subdir}")
results = train_clustering(le, feats, classes, subdir)
for key, value in results.items():
if key not in measures:
measures[key] = []
measures[key].append(results[key])
# File with results
file_results = os.path.join(args.outdir, args.prefix + "clustering_measures.txt")
with open(file_results, "w") as f:
f.write(f"[nmodels: {args.nmodels}]\n")
for key in measures.keys():
values = np.asarray(measures[key], dtype=float)
mean = np.mean(values)
std = np.std(values)
f.write(f"[{key} => mean: {mean}, std: {std}] \n")
# CSV File with all the values
file_csv_measures = os.path.join(args.outdir, args.prefix + "clustering_measures.csv")
with open(file_csv_measures, "w", newline="") as f:
writer = csv.writer(f, delimiter=",")
writer.writerow(["measure"] + list(range(1, args.nmodels+1)) + ["mean"] + ["std"])
for key in measures.keys():
values = np.asarray(measures[key], dtype=float)
mean = np.mean(values)
std = np.std(values)
writer.writerow([key] + list(values) + [mean] + [std])