Commit 1f8612ebfd7fe8173f5e7f5374192182a1064da3
1 parent
adbca3b1ce
Exists in
master
repaired memory error due to np.log2 behaviour
Showing 1 changed file with 167 additions and 0 deletions Side-by-side Diff
volia/measures.py
| 1 | +''' | |
| 2 | +This module is a part of my library. | |
| 3 | +It aims to compute some measures for clustering. | |
| 4 | +''' | |
| 5 | + | |
| 6 | +import numpy as np | |
| 7 | + | |
| 8 | +def disequilibrium_(matrix1, matrix2, isGlobal=False, mod=None): | |
| 9 | + ''' | |
| 10 | + Compute disequilibrium for all the clusters. | |
| 11 | + The disequilibrium is compute from the difference | |
| 12 | + between two clustering sets. | |
| 13 | + isGlobal permet à l'utilisateur de choisir le dénominateur de | |
| 14 | + la fonction : | |
| 15 | + - True : divise la valeur par le nombre d'élément du cluster | |
| 16 | + - False : divise la valeur par le nombre d'élément total | |
| 17 | + | |
| 18 | + withPower permet à l'utilisateur de décider d'appliquer un carré 2 ou | |
| 19 | + une valeur absolue. | |
| 20 | + ''' | |
| 21 | + | |
| 22 | + def divide_line(a, divider): | |
| 23 | + ''' | |
| 24 | + Sub function used for dividing matrix by a vector line by line. | |
| 25 | + ''' | |
| 26 | + return np.divide(a, divider, out=np.zeros_like(a), where=divider!=0) | |
| 27 | + | |
| 28 | + dividers1 = 0 | |
| 29 | + dividers2 = 0 | |
| 30 | + | |
| 31 | + if isGlobal: | |
| 32 | + dividers1 = matrix1.sum() | |
| 33 | + dividers2 = matrix2.sum() | |
| 34 | + else: | |
| 35 | + dividers1 = matrix1.sum(axis=1) | |
| 36 | + dividers2 = matrix2.sum(axis=1) | |
| 37 | + | |
| 38 | + matrix1_divided = np.apply_along_axis(divide_line, 0, np.asarray(matrix1, dtype=np.float), dividers1) | |
| 39 | + | |
| 40 | + matrix2_divided = np.apply_along_axis(divide_line, 0, np.asarray(matrix2, dtype=np.float), dividers2) | |
| 41 | + | |
| 42 | + diff = matrix1_divided - matrix2_divided | |
| 43 | + | |
| 44 | + mask = np.logical_not(np.logical_and(matrix2==0, matrix1==0)) | |
| 45 | + | |
| 46 | + result = diff | |
| 47 | + | |
| 48 | + if mod != None or mod == "": | |
| 49 | + for word in mod.split(" "): | |
| 50 | + if word == "power": | |
| 51 | + result = np.power(result,2) | |
| 52 | + elif word == "human": | |
| 53 | + result = result * 100 | |
| 54 | + elif word == "abs": | |
| 55 | + result = np.absolute(result) | |
| 56 | + else: | |
| 57 | + raise Exception("Need to specify an accepted mod of the disequilibrium (\"power\", \"human\" or \"abs\"") | |
| 58 | + return (mask, result) | |
| 59 | + | |
| 60 | + | |
| 61 | + | |
| 62 | +def disequilibrium_mean_by_cluster(mask, matrix): | |
| 63 | + ''' | |
| 64 | + Mean of disequilibrium | |
| 65 | + matrix is the disequilibrium calculated | |
| 66 | + from number of occurences belonging to a class, | |
| 67 | + for each cluster. | |
| 68 | + ''' | |
| 69 | + nb_k = len(matrix) | |
| 70 | + results = np.zeros((nb_k)) | |
| 71 | + | |
| 72 | + for i in range(nb_k): | |
| 73 | + results[i] = matrix[i].sum() / mask[i].sum() | |
| 74 | + return results | |
| 75 | + | |
| 76 | + | |
| 77 | +def disequilibrium(matrix1, matrix2, isGlobal=False): | |
| 78 | + ''' | |
| 79 | + Disequilibrium matrix | |
| 80 | + And Disequilibrium value | |
| 81 | + ''' | |
| 82 | + mask, result = disequilibrium_(matrix1, matrix2, isGlobal) | |
| 83 | + result_human = result * 100 | |
| 84 | + result_power = np.power(result, 2) | |
| 85 | + | |
| 86 | + return ( | |
| 87 | + mask, | |
| 88 | + result_human, | |
| 89 | + disequilibrium_mean_by_cluster(mask, result_power).sum()/matrix1.shape[0] | |
| 90 | + ) | |
| 91 | + | |
| 92 | + | |
| 93 | +def compute_count_matrix(y_hat, y_truth): | |
| 94 | + ''' | |
| 95 | + Check the size of the lists with assertion | |
| 96 | + ''' | |
| 97 | + # Check size of the lists | |
| 98 | + assert len(y_hat) == len(y_truth), f"Matrices should have the same length y_hat: {len(y_hat)}, y_truth: {len(y_truth)}" | |
| 99 | + | |
| 100 | + # Build count matrix | |
| 101 | + count_matrix = np.zeros((max(y_hat+1), max(y_truth+1))) | |
| 102 | + for i in range(len(y_hat)): | |
| 103 | + count_matrix[y_hat[i]][y_truth[i]] += 1 | |
| 104 | + return count_matrix | |
| 105 | + | |
| 106 | + | |
| 107 | +def entropy_score(y_truth, y_hat): | |
| 108 | + ''' | |
| 109 | + Need to use label encoder before givin y_hat and y_truth | |
| 110 | + Don't use one hot labels | |
| 111 | + | |
| 112 | + Return a tuple with: | |
| 113 | + - result_matrix : the matrix with the log multiplied probabilities (P(x) * log(P(x))) | |
| 114 | + - result_vector : the vector avec summing entropy of each class. Each value corresponds to a cluster. | |
| 115 | + - result : the final entropy measure of the clustering | |
| 116 | + ''' | |
| 117 | + def divide_line(a, divider): | |
| 118 | + ''' | |
| 119 | + Sub function used for dividing matrix by a vector line by line. | |
| 120 | + ''' | |
| 121 | + return np.divide(a, divider, out=np.zeros_like(a), where=divider!=0) | |
| 122 | + | |
| 123 | + # Build count matrix | |
| 124 | + count_matrix = compute_count_matrix(y_hat, y_truth) | |
| 125 | + | |
| 126 | + # Build dividers vector | |
| 127 | + dividers = count_matrix.sum(axis=1) | |
| 128 | + | |
| 129 | + matrix_divided = np.apply_along_axis(divide_line, 0, np.asarray(count_matrix, dtype=np.float), dividers) | |
| 130 | + | |
| 131 | + log_matrix = np.zeros(matrix_divided.shape) | |
| 132 | + np.log2(matrix_divided, out=log_matrix, where=count_matrix != 0) | |
| 133 | + result_matrix = -1 * np.multiply(matrix_divided, log_matrix) | |
| 134 | + result_vector = result_matrix.sum(axis=1) | |
| 135 | + result_vector.sum() | |
| 136 | + | |
| 137 | + if np.isnan(np.sum(result_vector)): | |
| 138 | + print("COUNT MATRIX") | |
| 139 | + print(count_matrix) | |
| 140 | + print("MATRIX DIVIDED") | |
| 141 | + print(matrix_divided) | |
| 142 | + print("RESULT MATRIX") | |
| 143 | + print(result_matrix) | |
| 144 | + print("VECTOR MATRIX") | |
| 145 | + print(result_vector) | |
| 146 | + print("An error occured due to nan value, some values are printed before") | |
| 147 | + exit(1) | |
| 148 | + | |
| 149 | + result = result_vector * dividers / dividers.sum() | |
| 150 | + result = result.sum() | |
| 151 | + return (result_matrix, result_vector, result) | |
| 152 | + | |
| 153 | + | |
| 154 | + | |
| 155 | +if __name__ == "__main__": | |
| 156 | + # Hypothesis | |
| 157 | + y_hat = np.asarray([0, 1, 2, 0, 1, 0, 3, 2, 2, 3, 3, 0]) | |
| 158 | + # Truth | |
| 159 | + y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]) | |
| 160 | + | |
| 161 | + (result_matrix, result_vector, result) = entropy(y, y_hat) | |
| 162 | + | |
| 163 | + print("Result matrix: ") | |
| 164 | + print(result_matrix) | |
| 165 | + print("Result vector: ") | |
| 166 | + print(result_vector) | |
| 167 | + print("Result: ", result) |