Commit 9a2c6b4d026288745fe95708e3ff55f00a2351fd
1 parent
890a775449
Exists in
master
New file that help generating some stats and distribution stats (via plots)
Showing 1 changed file with 114 additions and 0 deletions Side-by-side Diff
volia/stats.py
1 | + | |
2 | +import argparse | |
3 | + | |
4 | +import os | |
5 | +import core.data | |
6 | +import math | |
7 | +import numpy as np | |
8 | +import scipy.stats | |
9 | +import pickle | |
10 | +import matplotlib.pyplot as plt | |
11 | +import matplotlib.colors as mcolors | |
12 | + | |
13 | + | |
14 | + | |
15 | +from cycler import cycler | |
16 | + | |
17 | +def stats(): | |
18 | + print("Decisions") | |
19 | + | |
20 | + | |
21 | +print(list(mcolors.TABLEAU_COLORS)) | |
22 | + | |
23 | + | |
24 | +if __name__ == "__main__": | |
25 | + | |
26 | + # Parser | |
27 | + parser = argparse.ArgumentParser(description="") | |
28 | + | |
29 | + # Arguments | |
30 | + parser.add_argument("--predictions", type=str, help="prediction file", required=True) | |
31 | + parser.add_argument("--labels", type=str, help="label file", required=True) | |
32 | + parser.add_argument("--labelencoder", type=str, help="label encode pickle file", required=True) | |
33 | + parser.add_argument("--outdir", type=str, help="output file", required=True) | |
34 | + | |
35 | + args = parser.parse_args() | |
36 | + | |
37 | + predictions = core.data.read_id_values(args.predictions, float) | |
38 | + labels = core.data.read_labels(args.labels) | |
39 | + | |
40 | + le = None | |
41 | + with open(args.labelencoder, "rb") as f: | |
42 | + le = pickle.load(f) | |
43 | + stats = {} | |
44 | + | |
45 | + print("PREDICTIONS ---------------------------") | |
46 | + for id_, predictions_ in predictions.items(): | |
47 | + label = labels[id_][0] | |
48 | + if label not in stats: | |
49 | + stats[label] = { | |
50 | + "nb_utt": 1, | |
51 | + "predictions": np.expand_dims(predictions_, axis=0) | |
52 | + } | |
53 | + else: | |
54 | + stats[label]["nb_utt"] = stats[label]["nb_utt"] + 1 | |
55 | + stats[label]["predictions"] = np.append(stats[label]["predictions"], np.expand_dims(predictions_, axis=0), axis=0) | |
56 | + | |
57 | + | |
58 | + print("CALCULATING ---------------------------") | |
59 | + | |
60 | + | |
61 | + colors = [ | |
62 | + "darkorange", | |
63 | + "red", | |
64 | + "blue" | |
65 | + ] | |
66 | + custom_cycler = (cycler(color=list(mcolors.TABLEAU_COLORS)) * | |
67 | + cycler(linestyle=['-', '--', '-.'])) | |
68 | + | |
69 | + | |
70 | + for label, stats_ in stats.items(): | |
71 | + | |
72 | + plt.gca().set_prop_cycle(custom_cycler) | |
73 | + stats_mean = np.mean(stats_["predictions"], axis=0) | |
74 | + stats_std = np.std(stats_["predictions"], axis=0) | |
75 | + | |
76 | + #print(label) | |
77 | + #print(stats_mean) | |
78 | + #print(stats_std) | |
79 | + kwargs = dict(alpha=0.5) | |
80 | + | |
81 | + for i in range(stats_["predictions"].shape[1]): | |
82 | + label_str = le.inverse_transform([i])[0] | |
83 | + #plt.hist(stats_["predictions"][:, i], bins=10, label=label_str, **kwargs) | |
84 | + mu = stats_mean[i] | |
85 | + variance = stats_std[i] * stats_std[i] | |
86 | + sigma = stats_std[i] | |
87 | + # math.sqrt(variance) | |
88 | + print(f"{i}: mu {mu}, var {variance}, sigma {sigma}") | |
89 | + | |
90 | + #x_values = np.arange(-1, 5, 0.1) | |
91 | + | |
92 | + #y_values = scipy.stats.norm(mu, variance) | |
93 | + #y = scipy.stats.norm.pdf(x,mean,std) | |
94 | + | |
95 | + #plt.plot(x_values, y_values.pdf(x_values,)) | |
96 | + | |
97 | + #x, step = np.linspace(mu - 3*sigma, mu + 3*sigma, 1000, retstep=True) | |
98 | + x = np.linspace(0, 1, 1000) | |
99 | + #x = np.linspace(mu - 3*sigma, mu + 3*sigma, 1000) | |
100 | + #x, step = np.linspace(0, 1, 1000, retstep=True) | |
101 | + | |
102 | + P = scipy.stats.norm.cdf(x, mu, sigma) | |
103 | + #print(step) | |
104 | + plt.plot(x, P, label=label_str, **kwargs) | |
105 | + #plt.savefig("simple_gaussian.pdf") | |
106 | + | |
107 | + plt.legend() | |
108 | + plt.savefig(os.path.join(args.outdir, f"{label}_prediction_cdf.pdf")) | |
109 | + plt.clf() | |
110 | + | |
111 | + | |
112 | + # TODO: | |
113 | + # One graph for each label. Distribution of their predictions output are displayed. | |
114 | + |