Commit 9a2c6b4d026288745fe95708e3ff55f00a2351fd
1 parent
890a775449
Exists in
master
New file that help generating some stats and distribution stats (via plots)
Showing 1 changed file with 114 additions and 0 deletions Side-by-side Diff
volia/stats.py
| 1 | + | |
| 2 | +import argparse | |
| 3 | + | |
| 4 | +import os | |
| 5 | +import core.data | |
| 6 | +import math | |
| 7 | +import numpy as np | |
| 8 | +import scipy.stats | |
| 9 | +import pickle | |
| 10 | +import matplotlib.pyplot as plt | |
| 11 | +import matplotlib.colors as mcolors | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | +from cycler import cycler | |
| 16 | + | |
| 17 | +def stats(): | |
| 18 | + print("Decisions") | |
| 19 | + | |
| 20 | + | |
| 21 | +print(list(mcolors.TABLEAU_COLORS)) | |
| 22 | + | |
| 23 | + | |
| 24 | +if __name__ == "__main__": | |
| 25 | + | |
| 26 | + # Parser | |
| 27 | + parser = argparse.ArgumentParser(description="") | |
| 28 | + | |
| 29 | + # Arguments | |
| 30 | + parser.add_argument("--predictions", type=str, help="prediction file", required=True) | |
| 31 | + parser.add_argument("--labels", type=str, help="label file", required=True) | |
| 32 | + parser.add_argument("--labelencoder", type=str, help="label encode pickle file", required=True) | |
| 33 | + parser.add_argument("--outdir", type=str, help="output file", required=True) | |
| 34 | + | |
| 35 | + args = parser.parse_args() | |
| 36 | + | |
| 37 | + predictions = core.data.read_id_values(args.predictions, float) | |
| 38 | + labels = core.data.read_labels(args.labels) | |
| 39 | + | |
| 40 | + le = None | |
| 41 | + with open(args.labelencoder, "rb") as f: | |
| 42 | + le = pickle.load(f) | |
| 43 | + stats = {} | |
| 44 | + | |
| 45 | + print("PREDICTIONS ---------------------------") | |
| 46 | + for id_, predictions_ in predictions.items(): | |
| 47 | + label = labels[id_][0] | |
| 48 | + if label not in stats: | |
| 49 | + stats[label] = { | |
| 50 | + "nb_utt": 1, | |
| 51 | + "predictions": np.expand_dims(predictions_, axis=0) | |
| 52 | + } | |
| 53 | + else: | |
| 54 | + stats[label]["nb_utt"] = stats[label]["nb_utt"] + 1 | |
| 55 | + stats[label]["predictions"] = np.append(stats[label]["predictions"], np.expand_dims(predictions_, axis=0), axis=0) | |
| 56 | + | |
| 57 | + | |
| 58 | + print("CALCULATING ---------------------------") | |
| 59 | + | |
| 60 | + | |
| 61 | + colors = [ | |
| 62 | + "darkorange", | |
| 63 | + "red", | |
| 64 | + "blue" | |
| 65 | + ] | |
| 66 | + custom_cycler = (cycler(color=list(mcolors.TABLEAU_COLORS)) * | |
| 67 | + cycler(linestyle=['-', '--', '-.'])) | |
| 68 | + | |
| 69 | + | |
| 70 | + for label, stats_ in stats.items(): | |
| 71 | + | |
| 72 | + plt.gca().set_prop_cycle(custom_cycler) | |
| 73 | + stats_mean = np.mean(stats_["predictions"], axis=0) | |
| 74 | + stats_std = np.std(stats_["predictions"], axis=0) | |
| 75 | + | |
| 76 | + #print(label) | |
| 77 | + #print(stats_mean) | |
| 78 | + #print(stats_std) | |
| 79 | + kwargs = dict(alpha=0.5) | |
| 80 | + | |
| 81 | + for i in range(stats_["predictions"].shape[1]): | |
| 82 | + label_str = le.inverse_transform([i])[0] | |
| 83 | + #plt.hist(stats_["predictions"][:, i], bins=10, label=label_str, **kwargs) | |
| 84 | + mu = stats_mean[i] | |
| 85 | + variance = stats_std[i] * stats_std[i] | |
| 86 | + sigma = stats_std[i] | |
| 87 | + # math.sqrt(variance) | |
| 88 | + print(f"{i}: mu {mu}, var {variance}, sigma {sigma}") | |
| 89 | + | |
| 90 | + #x_values = np.arange(-1, 5, 0.1) | |
| 91 | + | |
| 92 | + #y_values = scipy.stats.norm(mu, variance) | |
| 93 | + #y = scipy.stats.norm.pdf(x,mean,std) | |
| 94 | + | |
| 95 | + #plt.plot(x_values, y_values.pdf(x_values,)) | |
| 96 | + | |
| 97 | + #x, step = np.linspace(mu - 3*sigma, mu + 3*sigma, 1000, retstep=True) | |
| 98 | + x = np.linspace(0, 1, 1000) | |
| 99 | + #x = np.linspace(mu - 3*sigma, mu + 3*sigma, 1000) | |
| 100 | + #x, step = np.linspace(0, 1, 1000, retstep=True) | |
| 101 | + | |
| 102 | + P = scipy.stats.norm.cdf(x, mu, sigma) | |
| 103 | + #print(step) | |
| 104 | + plt.plot(x, P, label=label_str, **kwargs) | |
| 105 | + #plt.savefig("simple_gaussian.pdf") | |
| 106 | + | |
| 107 | + plt.legend() | |
| 108 | + plt.savefig(os.path.join(args.outdir, f"{label}_prediction_cdf.pdf")) | |
| 109 | + plt.clf() | |
| 110 | + | |
| 111 | + | |
| 112 | + # TODO: | |
| 113 | + # One graph for each label. Distribution of their predictions output are displayed. | |
| 114 | + |