Commit 9bb5ff657bf803e1ce5a403f9998e700bf3a3f72
1 parent
78b39d22dd
Exists in
master
Adding n argument to pred_distribution_wt_sel
Adding some comments
Showing 1 changed file with 71 additions and 20 deletions Side-by-side Diff
volia/stats.py
| ... | ... | @@ -10,12 +10,18 @@ |
| 10 | 10 | import matplotlib.pyplot as plt |
| 11 | 11 | import matplotlib.colors as mcolors |
| 12 | 12 | from utils import SubCommandRunner |
| 13 | - | |
| 14 | - | |
| 15 | 13 | from cycler import cycler |
| 16 | 14 | |
| 15 | + | |
| 17 | 16 | def pred_distribution(predictions: str, labels: str, labelencoder: str, outdir: str): |
| 17 | + ''' | |
| 18 | + Distribution of the prediction. | |
| 18 | 19 | |
| 20 | + For each label, we plot the distribution of the class predicted. | |
| 21 | + For example, for each character, we plot the distribution of the characters predicted. | |
| 22 | + Another example, for each speaker, we plot the distribution of the characters predicted. | |
| 23 | + | |
| 24 | + ''' | |
| 19 | 25 | predictions = core.data.read_id_values(args.predictions, float) |
| 20 | 26 | labels = core.data.read_labels(args.labels) |
| 21 | 27 | |
| 22 | 28 | |
| ... | ... | @@ -35,11 +41,7 @@ |
| 35 | 41 | else: |
| 36 | 42 | stats[label]["nb_utt"] = stats[label]["nb_utt"] + 1 |
| 37 | 43 | stats[label]["predictions"] = np.append(stats[label]["predictions"], np.expand_dims(predictions_, axis=0), axis=0) |
| 38 | - | |
| 39 | 44 | |
| 40 | - print("CALCULATING ---------------------------") | |
| 41 | - | |
| 42 | - | |
| 43 | 45 | colors = [ |
| 44 | 46 | "darkorange", |
| 45 | 47 | "red", |
| 46 | 48 | |
| ... | ... | @@ -48,13 +50,14 @@ |
| 48 | 50 | custom_cycler = (cycler(color=list(mcolors.TABLEAU_COLORS)) * |
| 49 | 51 | cycler(linestyle=['-', '--', '-.'])) |
| 50 | 52 | |
| 53 | + print("CALCULATING ---------------------------") | |
| 51 | 54 | |
| 52 | 55 | for label, stats_ in stats.items(): |
| 53 | 56 | |
| 54 | 57 | plt.gca().set_prop_cycle(custom_cycler) |
| 55 | 58 | stats_mean = np.mean(stats_["predictions"], axis=0) |
| 56 | 59 | stats_std = np.std(stats_["predictions"], axis=0) |
| 57 | - | |
| 60 | + | |
| 58 | 61 | #print(label) |
| 59 | 62 | #print(stats_mean) |
| 60 | 63 | #print(stats_std) |
| ... | ... | @@ -66,7 +69,6 @@ |
| 66 | 69 | mu = stats_mean[i] |
| 67 | 70 | variance = stats_std[i] * stats_std[i] |
| 68 | 71 | sigma = stats_std[i] |
| 69 | - # math.sqrt(variance) | |
| 70 | 72 | print(f"{i}: mu {mu}, var {variance}, sigma {sigma}") |
| 71 | 73 | |
| 72 | 74 | #x_values = np.arange(-1, 5, 0.1) |
| ... | ... | @@ -75,7 +77,7 @@ |
| 75 | 77 | #y = scipy.stats.norm.pdf(x,mean,std) |
| 76 | 78 | |
| 77 | 79 | #plt.plot(x_values, y_values.pdf(x_values,)) |
| 78 | - | |
| 80 | + | |
| 79 | 81 | #x, step = np.linspace(mu - 3*sigma, mu + 3*sigma, 1000, retstep=True) |
| 80 | 82 | x = np.linspace(0, 1, 1000) |
| 81 | 83 | #x = np.linspace(mu - 3*sigma, mu + 3*sigma, 1000) |
| 82 | 84 | |
| 83 | 85 | |
| 84 | 86 | |
| 85 | 87 | |
| ... | ... | @@ -93,21 +95,68 @@ |
| 93 | 95 | print("Decisions") |
| 94 | 96 | |
| 95 | 97 | |
| 96 | -def pred_distribution_wt_sel(predictions: str, labels: str, labelencoder: str, outdir: str): | |
| 98 | +def pred_distribution_wt_sel(predictions: str, n: int, labels: str, labelencoder: str, outdir: str): | |
| 97 | 99 | |
| 100 | + ''' | |
| 101 | + Distribution of the predictions with selection process. | |
| 102 | + | |
| 103 | + 1) For each dimension, select the n individus with the maximum values for the focused dimension. | |
| 104 | + We name S_i the set of n selected individus for the dimension i. | |
| 105 | + 2) For each subset S_i, we plot the distribution of each dimension. | |
| 106 | + ''' | |
| 107 | + | |
| 108 | + le = None | |
| 109 | + with open(args.labelencoder, "rb") as f: | |
| 110 | + le = pickle.load(f) | |
| 111 | + | |
| 98 | 112 | keys_preds, matrix_preds = core.data.read_features_with_matrix(predictions) |
| 99 | - n = 3 | |
| 100 | - print(matrix_preds.shape) | |
| 113 | + | |
| 114 | + colors = [ | |
| 115 | + "darkorange", | |
| 116 | + "red", | |
| 117 | + "blue" | |
| 118 | + ] | |
| 119 | + custom_cycler = (cycler(color=list(mcolors.TABLEAU_COLORS)) * | |
| 120 | + cycler(linestyle=['-', '--', '-.'])) | |
| 121 | + | |
| 122 | + kwargs = dict(alpha=0.5) | |
| 123 | + | |
| 124 | + stats_of = open(os.path.join(args.outdir, f"stats.txt"), "w") | |
| 101 | 125 | for j in range(matrix_preds.shape[1]): |
| 126 | + | |
| 127 | + label_focused = le.inverse_transform([j])[0] | |
| 102 | 128 | indices = (-matrix_preds[:, j]).argsort()[:n] |
| 103 | - print(f"INDICE: {j}") | |
| 104 | - print("indices") | |
| 105 | - print(indices) | |
| 106 | - print("Best values") | |
| 107 | - print(matrix_preds[indices, j]) | |
| 108 | - print("All dimensions of best values") | |
| 109 | - print(matrix_preds[indices]) | |
| 110 | - # Select the n best for each column | |
| 129 | + | |
| 130 | + print(f"LABEL: {label_focused}", file=stats_of) | |
| 131 | + print(f"INDICE: {j}", file=stats_of) | |
| 132 | + print("indices", file=stats_of) | |
| 133 | + print(indices, file=stats_of) | |
| 134 | + print("Best values", file=stats_of) | |
| 135 | + print(matrix_preds[indices, j], file=stats_of) | |
| 136 | + print("All dimensions of best values", file=stats_of) | |
| 137 | + print(matrix_preds[indices], file=stats_of) | |
| 138 | + | |
| 139 | + # Use it to build a plot. | |
| 140 | + pred_ = matrix_preds[indices] | |
| 141 | + stats_mean = np.mean(pred_, axis=0) | |
| 142 | + stats_std = np.std(pred_, axis=0) | |
| 143 | + for i in range(matrix_preds.shape[1]): | |
| 144 | + label_str = le.inverse_transform([i])[0] | |
| 145 | + mu = stats_mean[i] | |
| 146 | + variance = stats_std[i] * stats_std[i] | |
| 147 | + sigma = stats_std[i] | |
| 148 | + | |
| 149 | + print(f"{i}: mu {mu}, var {variance}, sigma {sigma}") | |
| 150 | + | |
| 151 | + x = np.linspace(0, 1, 1000) | |
| 152 | + | |
| 153 | + P = scipy.stats.norm.cdf(x, mu, sigma) | |
| 154 | + plt.plot(x, P, label=label_str, **kwargs) | |
| 155 | + | |
| 156 | + plt.legend() | |
| 157 | + plt.savefig(os.path.join(args.outdir, f"{label_focused}_prediction_cdf.pdf")) | |
| 158 | + plt.clf() | |
| 159 | + stats_of.close() | |
| 111 | 160 | pass |
| 112 | 161 | |
| 113 | 162 | |
| 114 | 163 | |
| ... | ... | @@ -149,10 +198,12 @@ |
| 149 | 198 | # pred-distribution-with-selection |
| 150 | 199 | parser_pred_dist_wt_sel = subparsers.add_parser("pred-distribution-with-selection", help="plot distributions of prediction through labels with a selection of the n best records by column/class prediction.") |
| 151 | 200 | parser_pred_dist_wt_sel.add_argument("--predictions", type=str, help="prediction file", required=True) |
| 201 | + parser_pred_dist_wt_sel.add_argument("-n", type=int, help="Number of maximum selected for each prediction y_i.") | |
| 152 | 202 | parser_pred_dist_wt_sel.add_argument("--labels", type=str, help="label file", required=True) |
| 153 | 203 | parser_pred_dist_wt_sel.add_argument("--labelencoder", type=str, help="label encode pickle file", required=True) |
| 154 | 204 | parser_pred_dist_wt_sel.add_argument("--outdir", type=str, help="output file", required=True) |
| 155 | 205 | parser_pred_dist_wt_sel.set_defaults(which="pred_distribution_with_selection") |
| 206 | + | |
| 156 | 207 | # duration-stats |
| 157 | 208 | parser_utt2dur = subparsers.add_parser("utt2dur", help="distribution of utt2dur") |
| 158 | 209 | parser_utt2dur.add_argument("--utt2dur", type=str, help="utt2dur file", required=True) |