Blame view
LDA/04d-mmf_dsae.py
9.11 KB
7db73861f add vae et mmf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
# coding: utf-8 # In[2]: # Import import gensim from scipy import sparse import itertools from sklearn import preprocessing from keras.models import Sequential from keras.optimizers import SGD,Adam from mlp import * import mlp import sklearn.metrics import shelve import pickle |
e5108393c replace du mlp.p... |
18 |
|
7db73861f add vae et mmf |
19 20 21 22 23 24 25 26 27 28 |
from utils import * import sys import os import json # In[4]: infer_model=shelve.open("{}".format(sys.argv[2])) in_dir = sys.argv[1] #['ASR', 'TRS', 'LABEL'] # In[6]: |
2af8e57f4 change all |
29 30 31 32 |
if len(sys.argv) > 4 : features_key = sys.argv[4] else : features_key = "LDA" |
7db73861f add vae et mmf |
33 |
|
e5108393c replace du mlp.p... |
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
json_conf =json.load(open(sys.argv[3])) dsae_conf = json_conf["dsae"] hidden_size= dsae_conf["hidden_size"] input_activation=dsae_conf["input_activation"] output_activation=dsae_conf["output_activation"] loss=dsae_conf["loss"] epochs=dsae_conf["epochs"] batch_size=dsae_conf["batch"] patience=dsae_conf["patience"] do_do=dsae_conf["do"] try: k = dsae_conf["sgd"] if dsae_conf["sgd"]["name"] == "adam": sgd = Adam(lr=dsae_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) elif dsae_conf["sgd"]["name"] == "sgd": sgd = SGD(lr=dsae_conf["sgd"]["lr"]) except: sgd = dsae_conf["sgd"] trans_conf = json_conf["dsae"]["transform"] trans_hidden_size=trans_conf["hidden_size"] trans_input_activation=trans_conf["input_activation"] trans_output_activation=trans_conf["output_activation"] trans_loss=trans_conf["loss"] trans_epochs=trans_conf["epochs"] trans_batch_size=trans_conf["batch"] trans_patience=trans_conf["patience"] trans_do=trans_conf["do"] try: k = trans_conf["sgd"] if trans_conf["sgd"]["name"] == "adam": trans_sgd = Adam(lr=trans_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) elif trans_conf["sgd"]["name"] == "sgd": trans_sgd = SGD(lr=trans_conf["sgd"]["lr"]) except e : trans_sgd = trans_conf["sgd"] mlp_conf = json_conf["mlp"] mlp_h = mlp_conf["hidden_size"] mlp_loss = mlp_conf["loss"] mlp_dropouts = mlp_conf["do"] mlp_epochs = mlp_conf["epochs"] mlp_batch_size = mlp_conf["batch"] mlp_input_activation=mlp_conf["input_activation"] mlp_output_activation=mlp_conf["output_activation"] |
7db73861f add vae et mmf |
82 |
try: |
e5108393c replace du mlp.p... |
83 84 85 86 87 88 89 90 91 92 93 94 |
k = mlp_conf["sgd"] if mlp_conf["sgd"]["name"] == "adam": mlp_sgd = Adam(lr=mlp_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True) elif mlp_conf["sgd"]["name"] == "sgd": mlp_sgd = SGD(lr=mlp_conf["sgd"]["lr"]) except: mlp_sgd = mlp_conf["sgd"] name = json_conf["name"] try: os.mkdir("{}/{}".format(in_dir,name)) |
7db73861f add vae et mmf |
95 96 |
except: pass |
e5108393c replace du mlp.p... |
97 |
db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True) |
7db73861f add vae et mmf |
98 |
# |
7db73861f add vae et mmf |
99 100 101 102 103 104 105 106 107 |
keys = ["ASR","TRS"] db["DSAE"] = {} db["DSAEFT"] = {} mod = "ASR" |
2af8e57f4 change all |
108 109 110 |
res_tuple_ASR = train_ae(infer_model[features_key][mod]["TRAIN"], infer_model[features_key][mod]["DEV"], infer_model[features_key][mod]["TEST"], |
7db73861f add vae et mmf |
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
hidden_size,dropouts=do_do, patience = patience,sgd=sgd, input_activation=input_activation, output_activation=output_activation,loss=loss,epochs=epochs, batch_size=batch_size,verbose=0,get_weights=True) mlp_res_list = [] for layer in res_tuple_ASR[0]: mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"], layer[1],infer_model["LABEL"][mod]["DEV"], layer[2],infer_model["LABEL"][mod]["TEST"], mlp_h,loss=mlp_loss,dropouts=mlp_dropouts, sgd=mlp_sgd,epochs=mlp_epochs, output_activation=mlp_output_activation, input_activation=mlp_input_activation, batch_size=mlp_batch_size,fit_verbose=0)) db["DSAE"][mod] = mlp_res_list mod = "TRS" |
2af8e57f4 change all |
129 130 131 |
res_tuple_TRS = train_ae(infer_model[features_key][mod]["TRAIN"], infer_model[features_key][mod]["DEV"], infer_model[features_key][mod]["TEST"], |
7db73861f add vae et mmf |
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
hidden_size,dropouts=do_do, sgd=sgd,input_activation=input_activation, output_activation=output_activation,loss=loss,epochs=epochs, batch_size=batch_size,patience=patience, verbose=0,get_weights=True) mlp_res_list = [] for layer in res_tuple_TRS[0]: mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"], layer[1],infer_model["LABEL"][mod]["DEV"], layer[2],infer_model["LABEL"][mod]["TEST"], mlp_h,loss=mlp_loss,dropouts=mlp_dropouts, sgd=mlp_sgd,epochs=mlp_epochs, output_activation=mlp_output_activation, input_activation=mlp_input_activation, batch_size=mlp_batch_size,fit_verbose=0)) db["DSAE"][mod] = mlp_res_list transfert = [] print " get weight trans" |
e5108393c replace du mlp.p... |
156 157 |
#for asr_pred, trs_pred in zip(res_tuple_ASR[0], res_tuple_TRS[0]): # print "ASR", [ x.shape for x in asr_pred] |
7db73861f add vae et mmf |
158 |
|
e5108393c replace du mlp.p... |
159 |
# print "TRS", [ x.shape for x in trs_pred] |
7db73861f add vae et mmf |
160 161 |
for asr_pred, trs_pred in zip(res_tuple_ASR[0], res_tuple_TRS[0]): |
e5108393c replace du mlp.p... |
162 |
# print "ASR", [ x.shape for x in asr_pred] |
7db73861f add vae et mmf |
163 |
|
e5108393c replace du mlp.p... |
164 165 |
# print "TRS", [ x.shape for x in trs_pred] # print " TRANS SGD", trans_sgd |
7db73861f add vae et mmf |
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
transfert.append( train_ae(asr_pred[0], asr_pred[1], asr_pred[2], trans_hidden_size, dropouts=trans_do, y_train = trs_pred[0], y_dev=trs_pred[1], y_test = trs_pred[2], patience = trans_patience,sgd=trans_sgd, input_activation=trans_input_activation, output_activation=trans_output_activation, loss=trans_loss, epochs=trans_epochs, batch_size=trans_batch_size,verbose=0,get_weights=True) ) mod = "ASR" mlp_res_bylvl = [] print " MLP on transfert " for level, w in transfert : mlp_res_list = [] for layer in level : mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"], layer[1],infer_model["LABEL"][mod]["DEV"], layer[2],infer_model["LABEL"][mod]["TEST"], mlp_h,loss=mlp_loss,dropouts=mlp_dropouts, sgd=mlp_sgd,epochs=mlp_epochs, output_activation=mlp_output_activation, input_activation=mlp_input_activation, batch_size=mlp_batch_size,fit_verbose=0)) mlp_res_bylvl.append(mlp_res_list) db["DSAE"]["transfert"] = mlp_res_bylvl print " FT " WA = res_tuple_ASR[1] |
e5108393c replace du mlp.p... |
200 |
#print "WA", len(WA), [ len(x) for x in WA] |
7db73861f add vae et mmf |
201 |
WT = res_tuple_TRS[1] |
e5108393c replace du mlp.p... |
202 |
#print "WT", len(WT), [ len(x) for x in WT] |
7db73861f add vae et mmf |
203 |
Wtr = [ x[1] for x in transfert] |
e5108393c replace du mlp.p... |
204 |
#print "Wtr", len(Wtr), [ len(x) for x in Wtr],[ len(x[1]) for x in Wtr] |
7db73861f add vae et mmf |
205 |
|
2af8e57f4 change all |
206 207 208 209 210 211 |
ft_res = ft_dsae(infer_model[features_key]["ASR"]["TRAIN"], infer_model[features_key]["ASR"]["DEV"], infer_model[features_key]["ASR"]["TEST"], y_train=infer_model[features_key]["TRS"]["TRAIN"], y_dev=infer_model[features_key]["TRS"]["DEV"], y_test=infer_model[features_key]["TRS"]["TEST"], |
7db73861f add vae et mmf |
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
ae_hidden = hidden_size, transfer_hidden = trans_hidden_size, start_weights = WA, transfer_weights = Wtr, end_weights = WT, input_activation = input_activation, output_activation = output_activation, ae_dropouts= do_do, transfer_do = trans_do, sgd = sgd, loss = loss , patience = patience, batch_size = batch_size, epochs= epochs) mlps_by_lvls= [] for level in ft_res : mlp_res_list = [] for layer in level : mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"], layer[1],infer_model["LABEL"][mod]["DEV"], layer[2],infer_model["LABEL"][mod]["TEST"], mlp_h,loss=mlp_loss,dropouts=mlp_dropouts, sgd=mlp_sgd,epochs=mlp_epochs, output_activation=mlp_output_activation, input_activation=mlp_input_activation, batch_size=mlp_batch_size,fit_verbose=0)) mlps_by_lvls.append(mlp_res_list) db["DSAEFT"]["transfert"] = mlps_by_lvls db.close() |