04d-mmf_dsae.py
9.11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# coding: utf-8
# In[2]:
# Import
import gensim
from scipy import sparse
import itertools
from sklearn import preprocessing
from keras.models import Sequential
from keras.optimizers import SGD,Adam
from mlp import *
import mlp
import sklearn.metrics
import shelve
import pickle
from utils import *
import sys
import os
import json
# In[4]:
infer_model=shelve.open("{}".format(sys.argv[2]))
in_dir = sys.argv[1]
#['ASR', 'TRS', 'LABEL']
# In[6]:
if len(sys.argv) > 4 :
features_key = sys.argv[4]
else :
features_key = "LDA"
json_conf =json.load(open(sys.argv[3]))
dsae_conf = json_conf["dsae"]
hidden_size= dsae_conf["hidden_size"]
input_activation=dsae_conf["input_activation"]
output_activation=dsae_conf["output_activation"]
loss=dsae_conf["loss"]
epochs=dsae_conf["epochs"]
batch_size=dsae_conf["batch"]
patience=dsae_conf["patience"]
do_do=dsae_conf["do"]
try:
k = dsae_conf["sgd"]
if dsae_conf["sgd"]["name"] == "adam":
sgd = Adam(lr=dsae_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
elif dsae_conf["sgd"]["name"] == "sgd":
sgd = SGD(lr=dsae_conf["sgd"]["lr"])
except:
sgd = dsae_conf["sgd"]
trans_conf = json_conf["dsae"]["transform"]
trans_hidden_size=trans_conf["hidden_size"]
trans_input_activation=trans_conf["input_activation"]
trans_output_activation=trans_conf["output_activation"]
trans_loss=trans_conf["loss"]
trans_epochs=trans_conf["epochs"]
trans_batch_size=trans_conf["batch"]
trans_patience=trans_conf["patience"]
trans_do=trans_conf["do"]
try:
k = trans_conf["sgd"]
if trans_conf["sgd"]["name"] == "adam":
trans_sgd = Adam(lr=trans_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
elif trans_conf["sgd"]["name"] == "sgd":
trans_sgd = SGD(lr=trans_conf["sgd"]["lr"])
except e :
trans_sgd = trans_conf["sgd"]
mlp_conf = json_conf["mlp"]
mlp_h = mlp_conf["hidden_size"]
mlp_loss = mlp_conf["loss"]
mlp_dropouts = mlp_conf["do"]
mlp_epochs = mlp_conf["epochs"]
mlp_batch_size = mlp_conf["batch"]
mlp_input_activation=mlp_conf["input_activation"]
mlp_output_activation=mlp_conf["output_activation"]
try:
k = mlp_conf["sgd"]
if mlp_conf["sgd"]["name"] == "adam":
mlp_sgd = Adam(lr=mlp_conf["sgd"]["lr"])#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
elif mlp_conf["sgd"]["name"] == "sgd":
mlp_sgd = SGD(lr=mlp_conf["sgd"]["lr"])
except:
mlp_sgd = mlp_conf["sgd"]
name = json_conf["name"]
try:
os.mkdir("{}/{}".format(in_dir,name))
except:
pass
db = shelve.open("{}/{}/ae_model.shelve".format(in_dir,name),writeback=True)
#
keys = ["ASR","TRS"]
db["DSAE"] = {}
db["DSAEFT"] = {}
mod = "ASR"
res_tuple_ASR = train_ae(infer_model[features_key][mod]["TRAIN"],
infer_model[features_key][mod]["DEV"],
infer_model[features_key][mod]["TEST"],
hidden_size,dropouts=do_do,
patience = patience,sgd=sgd,
input_activation=input_activation,
output_activation=output_activation,loss=loss,epochs=epochs,
batch_size=batch_size,verbose=0,get_weights=True)
mlp_res_list = []
for layer in res_tuple_ASR[0]:
mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"],
layer[1],infer_model["LABEL"][mod]["DEV"],
layer[2],infer_model["LABEL"][mod]["TEST"],
mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,
sgd=mlp_sgd,epochs=mlp_epochs,
output_activation=mlp_output_activation,
input_activation=mlp_input_activation,
batch_size=mlp_batch_size,fit_verbose=0))
db["DSAE"][mod] = mlp_res_list
mod = "TRS"
res_tuple_TRS = train_ae(infer_model[features_key][mod]["TRAIN"],
infer_model[features_key][mod]["DEV"],
infer_model[features_key][mod]["TEST"],
hidden_size,dropouts=do_do,
sgd=sgd,input_activation=input_activation,
output_activation=output_activation,loss=loss,epochs=epochs,
batch_size=batch_size,patience=patience,
verbose=0,get_weights=True)
mlp_res_list = []
for layer in res_tuple_TRS[0]:
mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"],
layer[1],infer_model["LABEL"][mod]["DEV"],
layer[2],infer_model["LABEL"][mod]["TEST"],
mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,
sgd=mlp_sgd,epochs=mlp_epochs,
output_activation=mlp_output_activation,
input_activation=mlp_input_activation,
batch_size=mlp_batch_size,fit_verbose=0))
db["DSAE"][mod] = mlp_res_list
transfert = []
print " get weight trans"
#for asr_pred, trs_pred in zip(res_tuple_ASR[0], res_tuple_TRS[0]):
# print "ASR", [ x.shape for x in asr_pred]
# print "TRS", [ x.shape for x in trs_pred]
for asr_pred, trs_pred in zip(res_tuple_ASR[0], res_tuple_TRS[0]):
# print "ASR", [ x.shape for x in asr_pred]
# print "TRS", [ x.shape for x in trs_pred]
# print " TRANS SGD", trans_sgd
transfert.append( train_ae(asr_pred[0],
asr_pred[1],
asr_pred[2],
trans_hidden_size,
dropouts=trans_do,
y_train = trs_pred[0],
y_dev=trs_pred[1],
y_test = trs_pred[2],
patience = trans_patience,sgd=trans_sgd,
input_activation=trans_input_activation,
output_activation=trans_output_activation,
loss=trans_loss,
epochs=trans_epochs,
batch_size=trans_batch_size,verbose=0,get_weights=True) )
mod = "ASR"
mlp_res_bylvl = []
print " MLP on transfert "
for level, w in transfert :
mlp_res_list = []
for layer in level :
mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"],
layer[1],infer_model["LABEL"][mod]["DEV"],
layer[2],infer_model["LABEL"][mod]["TEST"],
mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,
sgd=mlp_sgd,epochs=mlp_epochs,
output_activation=mlp_output_activation,
input_activation=mlp_input_activation,
batch_size=mlp_batch_size,fit_verbose=0))
mlp_res_bylvl.append(mlp_res_list)
db["DSAE"]["transfert"] = mlp_res_bylvl
print " FT "
WA = res_tuple_ASR[1]
#print "WA", len(WA), [ len(x) for x in WA]
WT = res_tuple_TRS[1]
#print "WT", len(WT), [ len(x) for x in WT]
Wtr = [ x[1] for x in transfert]
#print "Wtr", len(Wtr), [ len(x) for x in Wtr],[ len(x[1]) for x in Wtr]
ft_res = ft_dsae(infer_model[features_key]["ASR"]["TRAIN"],
infer_model[features_key]["ASR"]["DEV"],
infer_model[features_key]["ASR"]["TEST"],
y_train=infer_model[features_key]["TRS"]["TRAIN"],
y_dev=infer_model[features_key]["TRS"]["DEV"],
y_test=infer_model[features_key]["TRS"]["TEST"],
ae_hidden = hidden_size,
transfer_hidden = trans_hidden_size,
start_weights = WA,
transfer_weights = Wtr,
end_weights = WT,
input_activation = input_activation,
output_activation = output_activation,
ae_dropouts= do_do,
transfer_do = trans_do,
sgd = sgd,
loss = loss ,
patience = patience,
batch_size = batch_size,
epochs= epochs)
mlps_by_lvls= []
for level in ft_res :
mlp_res_list = []
for layer in level :
mlp_res_list.append(train_mlp(layer[0],infer_model['LABEL'][mod]["TRAIN"],
layer[1],infer_model["LABEL"][mod]["DEV"],
layer[2],infer_model["LABEL"][mod]["TEST"],
mlp_h,loss=mlp_loss,dropouts=mlp_dropouts,
sgd=mlp_sgd,epochs=mlp_epochs,
output_activation=mlp_output_activation,
input_activation=mlp_input_activation,
batch_size=mlp_batch_size,fit_verbose=0))
mlps_by_lvls.append(mlp_res_list)
db["DSAEFT"]["transfert"] = mlps_by_lvls
db.close()