Blame view

VARIATIONAL/vae.py 4.03 KB
b6d0165d1   Killian   Initial commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  '''This script demonstrates how to build a variational autoencoder with Keras.
  Reference: "Auto-Encoding Variational Bayes" https://arxiv.org/abs/1312.6114
  '''
  
  import itertools
  import sys
  import json
  
  import numpy as np
  import matplotlib.pyplot as plt
  from scipy import sparse
  import scipy.io
  
  from keras.layers import Input, Dense, Lambda
  from keras.models import Model
  from keras import backend as K
  from keras import objectives
  from keras.datasets import mnist
  
  import pandas
  import shelve
  import pickle
  from utils import *
  #
  
  
  sparse_model=shelve.open("{}.shelve".format(sys.argv[1]))
  db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True)
  
  ASR=sparse_model["ASR"]
  TRS=sparse_model["TRS"]
  LABEL=sparse_model["LABEL"]
  
  db["LABEL"]=LABEL
  
  label_bin={}
  lb = preprocessing.LabelBinarizer(neg_label=0)
  lb.fit(LABEL["TRAIN"].apply(select))
  for i in ASR.keys():
      label_bin=lb.transform(LABEL[i].apply(select))
  
  batch_size = 16
  original_dim = 784
  latent_dim = 2
  intermediate_dim = 128
  epsilon_std = 0.01
  nb_epoch = 40
  
  
  hidden_size=50
  input_activation="tanh"
  out_activation="tanh"
  loss="mse"
  epochs=500
  batch=1
  patience=60
  w1_size=3000
  w2_size=500
  
  sgd = Adam(lr=0.0001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
  
  
  
  
  
  x = Input(batch_shape=(batch_size, original_dim))
  h = Dense(intermediate_dim, activation='relu')(x)
  z_mean = Dense(latent_dim)(h)
  z_log_std = Dense(latent_dim)(h)
  
  def sampling(args):
      z_mean, z_log_std = args
      epsilon = K.random_normal(shape=(batch_size, latent_dim),
                                mean=0., std=epsilon_std)
      return z_mean + K.exp(z_log_std) * epsilon
  
  # note that "output_shape" isn't necessary with the TensorFlow backend
  # so you could write `Lambda(sampling)([z_mean, z_log_std])`
  z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_std])
  
  # we instantiate these layers separately so as to reuse them later
  decoder_h = Dense(intermediate_dim, activation='relu')
  decoder_mean = Dense(original_dim, activation='sigmoid')
  h_decoded = decoder_h(z)
  x_decoded_mean = decoder_mean(h_decoded)
  
  def vae_loss(x, x_decoded_mean):
      xent_loss = objectives.binary_crossentropy(x, x_decoded_mean)
      kl_loss = - 0.5 * K.mean(1 + z_log_std - K.square(z_mean) - K.exp(z_log_std), axis=-1)
      return xent_loss + kl_loss
  
  vae = Model(x, x_decoded_mean)
  vae.compile(optimizer='rmsprop', loss=vae_loss)
  
  # train the VAE on MNIST digits
  (x_train, y_train), (x_test, y_test) = mnist.load_data()
  
  x_train = x_train.astype('float32') / 255.
  x_test = x_test.astype('float32') / 255.
  x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
  x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
  
  vae.fit(x_train, x_train,
          shuffle=True,
          nb_epoch=nb_epoch,
          batch_size=batch_size,
          validation_data=(x_test, x_test))
  
  # build a model to project inputs on the latent space
  encoder = Model(x, z_mean)
  
  # display a 2D plot of the digit classes in the latent space
  x_test_encoded = encoder.predict(x_test, batch_size=batch_size)
  plt.figure(figsize=(6, 6))
  plt.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1], c=y_test)
  plt.colorbar()
  plt.show()
  
  # build a digit generator that can sample from the learned distribution
  decoder_input = Input(shape=(latent_dim,))
  _h_decoded = decoder_h(decoder_input)
  _x_decoded_mean = decoder_mean(_h_decoded)
  generator = Model(decoder_input, _x_decoded_mean)
  
  # display a 2D manifold of the digits
  n = 15  # figure with 15x15 digits
  digit_size = 28
  figure = np.zeros((digit_size * n, digit_size * n))
  # we will sample n points within [-15, 15] standard deviations
  grid_x = np.linspace(-15, 15, n)
  grid_y = np.linspace(-15, 15, n)
  
  for i, yi in enumerate(grid_x):
      for j, xi in enumerate(grid_y):
          z_sample = np.array([[xi, yi]]) * epsilon_std
          x_decoded = generator.predict(z_sample)
          digit = x_decoded[0].reshape(digit_size, digit_size)
          figure[i * digit_size: (i + 1) * digit_size,
                 j * digit_size: (j + 1) * digit_size] = digit
  
  plt.figure(figsize=(10, 10))
  plt.imshow(figure)
  plt.show()