vae.py
4.03 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
'''This script demonstrates how to build a variational autoencoder with Keras.
Reference: "Auto-Encoding Variational Bayes" https://arxiv.org/abs/1312.6114
'''
import itertools
import sys
import json
import numpy as np
import matplotlib.pyplot as plt
from scipy import sparse
import scipy.io
from keras.layers import Input, Dense, Lambda
from keras.models import Model
from keras import backend as K
from keras import objectives
from keras.datasets import mnist
import pandas
import shelve
import pickle
from utils import *
#
sparse_model=shelve.open("{}.shelve".format(sys.argv[1]))
db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True)
ASR=sparse_model["ASR"]
TRS=sparse_model["TRS"]
LABEL=sparse_model["LABEL"]
db["LABEL"]=LABEL
label_bin={}
lb = preprocessing.LabelBinarizer(neg_label=0)
lb.fit(LABEL["TRAIN"].apply(select))
for i in ASR.keys():
label_bin=lb.transform(LABEL[i].apply(select))
batch_size = 16
original_dim = 784
latent_dim = 2
intermediate_dim = 128
epsilon_std = 0.01
nb_epoch = 40
hidden_size=50
input_activation="tanh"
out_activation="tanh"
loss="mse"
epochs=500
batch=1
patience=60
w1_size=3000
w2_size=500
sgd = Adam(lr=0.0001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
x = Input(batch_shape=(batch_size, original_dim))
h = Dense(intermediate_dim, activation='relu')(x)
z_mean = Dense(latent_dim)(h)
z_log_std = Dense(latent_dim)(h)
def sampling(args):
z_mean, z_log_std = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., std=epsilon_std)
return z_mean + K.exp(z_log_std) * epsilon
# note that "output_shape" isn't necessary with the TensorFlow backend
# so you could write `Lambda(sampling)([z_mean, z_log_std])`
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_std])
# we instantiate these layers separately so as to reuse them later
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='sigmoid')
h_decoded = decoder_h(z)
x_decoded_mean = decoder_mean(h_decoded)
def vae_loss(x, x_decoded_mean):
xent_loss = objectives.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.mean(1 + z_log_std - K.square(z_mean) - K.exp(z_log_std), axis=-1)
return xent_loss + kl_loss
vae = Model(x, x_decoded_mean)
vae.compile(optimizer='rmsprop', loss=vae_loss)
# train the VAE on MNIST digits
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
vae.fit(x_train, x_train,
shuffle=True,
nb_epoch=nb_epoch,
batch_size=batch_size,
validation_data=(x_test, x_test))
# build a model to project inputs on the latent space
encoder = Model(x, z_mean)
# display a 2D plot of the digit classes in the latent space
x_test_encoded = encoder.predict(x_test, batch_size=batch_size)
plt.figure(figsize=(6, 6))
plt.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1], c=y_test)
plt.colorbar()
plt.show()
# build a digit generator that can sample from the learned distribution
decoder_input = Input(shape=(latent_dim,))
_h_decoded = decoder_h(decoder_input)
_x_decoded_mean = decoder_mean(_h_decoded)
generator = Model(decoder_input, _x_decoded_mean)
# display a 2D manifold of the digits
n = 15 # figure with 15x15 digits
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# we will sample n points within [-15, 15] standard deviations
grid_x = np.linspace(-15, 15, n)
grid_y = np.linspace(-15, 15, n)
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
z_sample = np.array([[xi, yi]]) * epsilon_std
x_decoded = generator.predict(z_sample)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(10, 10))
plt.imshow(figure)
plt.show()