STACKEDAE_MODELS.py
7.39 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# coding: utf-8
# In[2]:
# Import
import pandas
# Alignement
import nltk
import codecs
import gensim
from scipy import sparse
import itertools
from sklearn.feature_extraction.text import CountVectorizer
import scipy.sparse
import scipy.io
from sklearn import preprocessing
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation,AutoEncoder
from keras.optimizers import SGD,Adam
from keras.layers import containers
from mlp import *
import mlp
import sklearn.metrics
import shelve
import pickle
from utils import *
import sys
import json
import itertools
# In[4]:
db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True)
sparse_model=shelve.open("{}.shelve".format(sys.argv[1]))
#['ASR', 'TRS', 'LABEL']
# In[6]:
ASR=sparse_model["ASR"]
TRS=sparse_model["TRS"]
LABEL=sparse_model["LABEL"]
db["ASR_SPARSE"]=ASR
db["TRS_SPARSE"]=TRS
db["LABEL"]=LABEL
print "todo label"
def select(elm):
return int(elm.split("_")[-1])
#z.apply(select)
label_bin={}
lb = preprocessing.LabelBinarizer(neg_label=0)
lb.fit(LABEL["TRAIN"].apply(select))
for i in ASR.keys():
label_bin=lb.transform(LABEL[i].apply(select))
hidden_size=50
input_activation="tanh"
out_activation="tanh"
loss="mse"
epochs=500
batch=1
patience=60
w1_size=300
w2_size=500
do_do=True
sgd = Adam(lr=0.0001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
try :
sgd_repr=sgd.get_config()
except AttributeError :
sgd_repr=sgd
json.dump({ "h1" : hidden_size,
"inside_activation" : input_activation,
"out_activation" : out_activation,
"do_dropout": do_do,
"loss" : loss,
"epochs" : epochs ,
"batch_size" : batch,
"patience" : patience,
"sgd" : sgd_repr},
open("{}.json".format(sys.argv[2]),"w"),
indent=4)
def fintuned(sized,x_data,y_data,input_activation,do_do):
ae = Sequential()
previous = x_data["TRAIN"].shape[1]
for hidden_size,w in sized:
ae.add(Dense(hidden_size,input_dim=previous,activation=input_activation,weights=w[:2]))
if do_do :
ae.add(Dropout(0.5))
previous = hidden_size
ae.compile(sgd,loss)
hist = ae.fit(x_data["TRAIN"].todense(),y_data["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch,
callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
patience=patience, verbose=0)],validation_data=(x_data["DEV"].todense(),y_data["DEV"].todense()),verbose=1)
return (ae.get_weights(),hist)
def get_projection(weights,x_data):
proj_list=[x_data]
lappend=proj_list.append
for w in zip(weights[0::2],weights[1::2]) :
decoder =Sequential()
decoder.add(Dense(w[1].shape[0],input_dim=proj_list[-1]["TRAIN"].shape[1],weights=w))
decoder.compile(sgd,loss)
lappend({})
for key in proj_list[-2].keys():
try :
proj_list[-1][key]=decoder.predict(proj_list[-2][key])
except :
proj_list[-1][key]=decoder.predict(proj_list[-2][key].todense())
return proj_list
def learn_ae(hidden_size,data,do_do,input_activation,output_activation):
autoencode=Sequential()
autoencode.add(Dense(hidden_size,input_dim=data["TRAIN"].shape[1],init='glorot_uniform',activation=input_activation))
if do_do :
autoencode.add(Dropout(0.5))
try :
autoencode.add(Dense(data["DEV"].todense().shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation))
autoencode.compile(optimizer=sgd,loss=loss)
hist =autoencode.fit(data["TRAIN"].todense(),data["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch,
callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
patience=patience, verbose=0)],validation_data=(data["DEV"].todense(),data["DEV"].todense()),verbose=1)
auto_decoder=Sequential()
auto_decoder.add(Dense(hidden_size,input_dim=data["DEV"].todense().shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2]))
auto_decoder.compile(optimizer=sgd,loss=loss)
data_proj={}
for i in data.keys():
data_proj[i]=auto_decoder.predict(data[i].todense())
return (data_proj,(hist.epoch,hist.history),autoencode.get_weights())
except AttributeError :
autoencode.add(Dense(data["DEV"].shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation))
autoencode.compile(optimizer=sgd,loss=loss)
hist =autoencode.fit(data["TRAIN"],data["TRAIN"],nb_epoch=epochs,batch_size=batch,
callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
patience=patience, verbose=0)],validation_data=(data["DEV"],data["DEV"]),verbose=1)
auto_decoder=Sequential()
auto_decoder.add(Dense(hidden_size,input_dim=data["DEV"].shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2]))
auto_decoder.compile(optimizer=sgd,loss=loss)
data_proj={}
for i in data.keys():
data_proj[i]=auto_decoder.predict(data[i])
return (data_proj,(hist.epoch,hist.history),autoencode.get_weights())
print "gogo autoencoder ASR"
hist = {}
ASR_AE_H1,hist["ASR_AE_H1"],wa1=learn_ae(hidden_size,ASR,do_do,input_activation,out_activation)
db["ASR_AE_H1"]=ASR_AE_H1
ASR_AE_H2,hist["ASR_AE_H2"],wa2=learn_ae(w1_size,ASR_AE_H1,do_do,input_activation,out_activation)
db["ASR_AE_H2"]=ASR_AE_H2
ASR_AE_H3,hist["ASR_AE_H3"],wa3=learn_ae(hidden_size,ASR_AE_H2,do_do,input_activation,out_activation)
db["ASR_AE_H3"]=ASR_AE_H3
ASR_AE_H4,hist["ASR_AE_H4"],wa4=learn_ae(ASR["TRAIN"].shape[1],ASR_AE_H3,do_do,input_activation,out_activation)
db["ASR_AE_OUT"]=ASR_AE_H4
db.sync()
print "fine_tuning"
w,h=fintuned([(hidden_size,wa1),(w1_size,wa2),(hidden_size,wa3),(ASR["TRAIN"].shape[1],wa4)],ASR,ASR,input_activation,do_do)
hist["finetuning_a2a"] = (h.epoch,h.history)
for k,proj in enumerate(get_projection(w,ASR)):
db["ASR_AE_FTA2A_H"+str(k)]=proj
w,h=fintuned([(hidden_size,wa1),(w1_size,wa2),(hidden_size,wa3),(ASR["TRAIN"].shape[1],wa4)],ASR,TRS,input_activation,do_do)
hist["finetuning_a2t"] = (h.epoch,h.history)
for k,proj in enumerate(get_projection(w,ASR)):
db["ASR_AE_FTA2T_H"+str(k)]=proj
print "auto encoder trs learning"
TRS_AE_H1,hist["TRS_AE_H1"],wt1=learn_ae(hidden_size,TRS,do_do,input_activation,out_activation)
db["TRS_AE_H1"]=TRS_AE_H1
TRS_AE_H2,hist["TRS_AE_H2"],wt2=learn_ae(w1_size,TRS_AE_H1,do_do,input_activation,out_activation)
db["TRS_AE_H2"]=TRS_AE_H2
TRS_AE_H3,hist["TRS_AE_H3"],wt3,=learn_ae(hidden_size,TRS_AE_H2,do_do,input_activation,out_activation)
db["TRS_AE_H3"]=TRS_AE_H3
TRS_AE_H4,hist["TRS_AE_H4"],wt4=learn_ae(TRS["TRAIN"].shape[1],TRS_AE_H3,do_do,input_activation,out_activation)
db["TRS_AE_OUT"]=TRS_AE_H4
db.sync()
w,h=fintuned([(hidden_size,wt1),(w1_size,wt2),(hidden_size,wt3),(ASR["TRAIN"].shape[1],wt4)],TRS,TRS,input_activation,do_do)
hist["finetuning_t2t"] = (h.epoch,h.history)
for k,proj in enumerate(get_projection(w,ASR)):
db["ASR_AE_FTT2T_H"+str(k)]=proj
# In[261]:
#pred_dev= model_TRS_AE.predict(TRS_AE["DEV"],batch_size=1)
db.sync()
db.close()
json.dump({ "h1" : hidden_size,
"inside_activation" : input_activation,
"out_activation" : out_activation,
"do_dropout": do_do,
"loss" : loss,
"epochs" : epochs ,
"batch_size" : batch,
"patience" : patience,
"sgd" : sgd_repr,
"hist" : hist},
open("{}.json".format(sys.argv[2]),"w"),
indent=4)