02-lda.py
5.35 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gensim
import os
import sys
import pickle
from gensim.models.ldamodel import LdaModel
from gensim.models.ldamulticore import LdaMulticore
from collections import Counter
import numpy as np
import codecs
import shelve
import logging
import dill
from tinydb import TinyDB, where, Query
import time
from joblib import Parallel, delayed
def calc_perp(models,train):
stop_words=models[1]
name = models[0]
logging.warning(" go {} ".format(name))
logging.warning("TRS to be done")
entry = Query()
value=db.search(entry.name == name)
if len(value) > 0 :
logging.warning("{} already done".format(name))
return
dev_trs=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["TRS_wid"]["DEV"]]
lda_trs = models[2]
perp_trs = lda_trs.log_perplexity(dev_trs)
logging.warning("ASR to be done")
dev_asr = [ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["ASR_wid"]["DEV"]]
lda_asr = models[5]
perp_asr = lda_asr.log_perplexity(dev_asr)
logging.warning("ASR saving")
res_dict = {"name" : name, "asr" : perp_asr, "trs" : perp_trs }
return res_dict
def train_lda(out_dir,train,size,it,sw_size,alpha,eta,passes,chunk):
name = "s{}_it{}_sw{}_a{}_e{}_p{}_c{}".format(size,it,sw_size,alpha,eta,passes,chunk)
logging.warning(name)
deep_out_dir = out_dir+"/"+name
if os.path.isdir(deep_out_dir):
logging.error(name+" already done")
return
logging.warning(name+" to be done")
asr_count=Counter([ x for y in train["ASR_wid"]["TRAIN"] for x in y])
trs_count=Counter([ x for y in train["TRS_wid"]["TRAIN"] for x in y])
asr_sw = [ x[0] for x in asr_count.most_common(sw_size) ]
trs_sw = [ x[0] for x in trs_count.most_common(sw_size) ]
stop_words=set(asr_sw) | set(trs_sw)
logging.warning("TRS to be done")
lda_trs = LdaModel(corpus=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["TRS_wid"]["TRAIN"]], id2word=train["vocab"], num_topics=int(size), chunksize=chunk,iterations=it,alpha=alpha,eta=eta,passes=passes)
logging.warning("ASR to be done")
lda_asr = LdaModel(corpus=[ [ (x,y) for x,y in Counter(z).items() if x not in stop_words] for z in train["ASR_wid"]["TRAIN"]], id2word=train["vocab"], num_topics=int(size), chunksize=chunk,iterations=it,alpha=alpha,eta=eta,passes=passes)
dico = train["vocab"]
word_list = [ dico[x] for x in range(len(train["vocab"]))]
asr_probs = []
for line in lda_asr.expElogbeta:
nline = line / np.sum(line)
asr_probs.append([ str(x) for x in nline])
trs_probs = []
for line in lda_trs.expElogbeta:
nline = line / np.sum(line)
trs_probs.append([str(x) for x in nline])
K = lda_asr.num_topics
topicWordProbMat_asr = lda_asr.print_topics(K,10)
K = lda_trs.num_topics
topicWordProbMat_trs = lda_trs.print_topics(K,10)
os.mkdir(deep_out_dir)
dill.dump([x for x in stop_words],open(deep_out_dir+"/stopwords.dill","w"))
lda_asr.save(deep_out_dir+"/lda_asr.model")
lda_trs.save(deep_out_dir+"/lda_trs.model")
dill.dump([x for x in asr_probs],open(deep_out_dir+"/lda_asr_probs.dill","w"))
dill.dump([x for x in trs_probs],open(deep_out_dir+"/lda_trs_probs.dill","w"))
return [name, stop_words, lda_asr , asr_probs , topicWordProbMat_asr, lda_trs, trs_probs, topicWordProbMat_trs]
def train_one(name,train,s,i,sw,a,e,p,c):
st=time.time()
logging.warning(" ; ".join([str(x) for x in [s,i,sw,a,e,p,c]]))
models = train_lda(name,train,s,i,sw,a,e,p,c)
if models:
m = calc_perp(models,train)
#dill.dump(models,open("{}/{}.dill".format(name,models[0]),"wb"))
else :
m = None
e = time.time()
logging.warning("fin en : {}".format(e-st))
return m
if __name__ == "__main__":
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.WARNING)
input_shelve = sys.argv[1]
db_path = sys.argv[2]
size = [ int(x) for x in sys.argv[3].split("_")]
workers = int(sys.argv[4])
name = sys.argv[5]
it = [ int(x) for x in sys.argv[6].split("_")]
sw_size = [ int(x) for x in sys.argv[7].split("_")]
if sys.argv[8] != "None" :
alpha = [ "symmetric", "auto" ] + [ float(x) for x in sys.argv[8].split("_")]
eta = ["auto"] + [ float(x) for x in sys.argv[9].split("_")]
else :
alpha = ["symmetric"]
eta = ["auto"]
passes = [ int(x) for x in sys.argv[10].split("_")]
chunk = [ int(x) for x in sys.argv[11].split("_")]
#train=pickle.load(open("{}/newsgroup_bow_train.pk".format(input_dir)))
train = shelve.open(input_shelve)
try :
os.mkdir(name)
except :
logging.warning(" folder already existe " )
db = TinyDB(db_path)
nb_model = len(passes) * len(chunk) * len(it) * len(sw_size) * len(alpha) * len(eta) * len(size)
logging.warning(" hey will train {} models ".format(nb_model))
args_list=[]
for p in passes:
for c in chunk:
for i in it :
for sw in sw_size:
for a in alpha:
for e in eta:
for s in size:
args_list.append((name,train,s,i,sw,a,e,p,c))
res_list= Parallel(n_jobs=15)(delayed(train_one)(*args) for args in args_list)
for m in res_list :
db.insert(m)