Classif_with_raw_train.ipynb 168 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "import itertools\n",
    "\n",
    "import shelve\n",
    "\n",
    "import pickle\n",
    "\n",
    "import pandas\n",
    "\n",
    "import numpy as np\n",
    "\n",
    "import nltk\n",
    "\n",
    "import codecs\n",
    "\n",
    "import gensim\n",
    "\n",
    "import scipy\n",
    "\n",
    "from scipy import sparse\n",
    "\n",
    "import scipy.sparse\n",
    "\n",
    "import scipy.io\n",
    "\n",
    "import sklearn\n",
    "\n",
    "from sklearn.feature_extraction.text import CountVectorizer\n",
    "\n",
    "import sklearn.metrics\n",
    "\n",
    "from sklearn.neighbors import NearestNeighbors\n",
    "\n",
    "from sklearn.metrics import confusion_matrix\n",
    "\n",
    "from sklearn import preprocessing\n",
    "from keras.models import Sequential\n",
    "from keras.layers.core import Dense, Dropout, Activation,AutoEncoder\n",
    "from keras.optimizers import SGD,Adam\n",
    "from keras.layers import containers\n",
    "from mlp import *\n",
    "import mlp\n",
    "import sys\n",
    "import utils\n",
    "from sklearn.preprocessing import LabelBinarizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%matplotlib inline "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "corps=shelve.open(\"models/DECODA_AE_TANH_1060_TFIDF.shelve\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "lb=LabelBinarizer()\n",
    "y_train=lb.fit_transform([utils.select(ligneid) for ligneid in corps[\"LABEL\"][\"TRAIN\"]])\n",
    "y_dev=lb.transform([utils.select(ligneid) for ligneid in corps[\"LABEL\"][\"DEV\"]])\n",
    "y_test=lb.transform([utils.select(ligneid) for ligneid in corps[\"LABEL\"][\"TEST\"]])\n",
    "keys = corps.keys()\n",
    "if \"LABEL\" in keys:\n",
    "    keys.remove(\"LABEL\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "keys=[\"TRS_SPARSE\",\"ASR_SPARSE\",\"ASR_H2_TRANFORMED_OUT\",\"ASR_H1_TRANFORMED_OUT\",\"TRS_AE_OUT\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "out_db=shelve.open(\"scores/RAW_TRS_TRAIN.shelve\",writeback=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false,
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "TRS_SPARSE\n",
      "Save 0\n",
      "Save 3\n",
      "Save 4\n",
      "Save 5\n",
      "Save 6\n",
      "Save 8\n",
      "Save 10\n",
      "Save 11\n",
      "Save 13\n",
      "Save 14\n",
      "Save 15\n",
      "Save 16\n",
      "Save 19\n",
      "Save 22\n",
      "Save 23\n",
      "Save 24\n",
      "Save 25\n",
      "Save 26\n",
      "Save 29\n",
      "Save 32\n",
      "Save 36\n",
      "Save 37\n",
      "Save 41\n",
      "Save 42\n",
      "Save 45\n",
      "Save 48\n",
      "Save 50\n",
      "Save 51\n",
      "Save 54\n",
      "Save 57\n",
      "Save 59\n",
      "Save 62\n",
      "Save 68\n",
      "Save 73\n",
      "Save 74\n",
      "Save 78\n",
      "Save 83\n",
      "Save 85\n",
      "Save 88\n",
      "Save 91\n",
      "Save 93\n",
      "Save 94\n",
      "Save 97\n",
      "Save 104\n",
      "Save 107\n",
      "Save 111\n",
      "Save 112\n",
      "Save 120\n",
      "Save 124\n",
      "Save 129\n",
      "Save 132\n",
      "Save 134\n",
      "Save 138\n",
      "Save 140\n",
      "Save 141\n",
      "Save 144\n",
      "Save 147\n",
      "Save 151\n",
      "Save 152\n",
      "Save 153\n",
      "Save 154\n",
      "Save 156\n",
      "Save 158\n",
      "Save 161\n",
      "Save 174\n",
      "Save 175\n",
      "Save 179\n",
      "Save 183\n",
      "Save 185\n",
      "Save 187\n",
      "Save 194\n",
      "Save 199\n",
      "Save 200\n",
      "Save 205\n",
      "Save 208\n",
      "Save 212\n",
      "Save 217\n",
      "Save 223\n",
      "Save 231\n",
      "Save 233\n",
      "Save 236\n",
      "Save 238\n",
      "Save 246\n",
      "Save 249\n",
      "Save 254\n",
      "Save 258\n",
      "Save 264\n",
      "Save 267\n",
      "Save 271\n",
      "Save 274\n",
      "Save 278\n",
      "Save 281\n",
      "Save 285\n",
      "Save 286\n",
      "Save 292\n",
      "Save 299\n",
      "Save 302\n",
      "Save 304\n",
      "Save 311\n",
      "Save 312\n",
      "Save 315\n",
      "Save 318\n",
      "Save 328\n",
      "Save 330\n",
      "Save 333\n",
      "Save 336\n",
      "Save 337\n",
      "Save 338\n",
      "Save 339\n",
      "Save 344\n",
      "Save 346\n",
      "Save 350\n",
      "Save 352\n",
      "Save 354\n",
      "Save 356\n",
      "Save 358\n",
      "Save 361\n",
      "Save 367\n",
      "Save 371\n",
      "Save 373\n",
      "Save 374\n",
      "Save 385\n",
      "Save 390\n",
      "Save 394\n",
      "Save 396\n",
      "Save 398\n",
      "Save 399\n",
      "Save 403\n",
      "Save 409\n",
      "Save 413\n",
      "Save 415\n",
      "Save 418\n",
      "Save 419\n",
      "Save 444\n",
      "Save 445\n",
      "Save 465\n",
      "Save 468\n",
      "Save 470\n",
      "Save 477\n",
      "Save 484\n",
      "Save 487\n",
      "Save 490\n",
      "Save 493\n",
      "ASR_SPARSE\n",
      "Save 0\n",
      "Save 3\n",
      "Save 4\n",
      "Save 5\n",
      "Save 6\n",
      "Save 8\n",
      "Save 11\n",
      "Save 14\n",
      "Save 16\n",
      "Save 17\n",
      "Save 21\n",
      "Save 23\n",
      "Save 24\n",
      "Save 27\n",
      "Save 29\n",
      "Save 30\n",
      "Save 32\n",
      "Save 33\n",
      "Save 34\n",
      "Save 35\n",
      "Save 38\n",
      "Save 40\n",
      "Save 42\n",
      "Save 44\n",
      "Save 46\n",
      "Save 52\n",
      "Save 54\n",
      "Save 56\n",
      "Save 61\n",
      "Save 62\n",
      "Save 63\n",
      "Save 66\n",
      "Save 68\n",
      "Save 75\n",
      "Save 78\n",
      "Save 83\n",
      "Save 86\n",
      "Save 88\n",
      "Save 89\n",
      "Save 92\n",
      "Save 95\n",
      "Save 99\n",
      "Save 103\n",
      "Save 106\n",
      "Save 107\n",
      "Save 108\n",
      "Save 111\n",
      "Save 118\n",
      "Save 120\n",
      "Save 125\n",
      "Save 128\n",
      "Save 130\n",
      "Save 136\n",
      "Save 142\n",
      "Save 143\n",
      "Save 146\n",
      "Save 147\n",
      "Save 153\n",
      "Save 154\n",
      "Save 156\n",
      "Save 157\n",
      "Save 161\n",
      "Save 162\n",
      "Save 164\n",
      "Save 166\n",
      "Save 167\n",
      "Save 170\n",
      "Save 174\n",
      "Save 177\n",
      "Save 178\n",
      "Save 184\n",
      "Save 185\n",
      "Save 188\n",
      "Save 189\n",
      "Save 193\n",
      "Save 196\n",
      "Save 197\n",
      "Save 199\n",
      "Save 203\n",
      "Save 207\n",
      "Save 211\n",
      "Save 215\n",
      "Save 218\n",
      "Save 219\n",
      "Save 221\n",
      "Save 228\n",
      "Save 234\n",
      "Save 236\n",
      "Save 242\n",
      "Save 244\n",
      "Save 246\n",
      "Save 249\n",
      "Save 252\n",
      "Save 255\n",
      "Save 259\n",
      "Save 266\n",
      "Save 273\n",
      "Save 278\n",
      "Save 283\n",
      "Save 285\n",
      "Save 293\n",
      "Save 298\n",
      "Save 302\n",
      "Save 307\n",
      "Save 309\n",
      "Save 321\n",
      "Save 325\n",
      "Save 327\n",
      "Save 331\n",
      "Save 332\n",
      "Save 336\n",
      "Save 338\n",
      "Save 349\n",
      "Save 351\n",
      "Save 359\n",
      "Save 364\n",
      "Save 365\n",
      "Save 370\n",
      "Save 412\n",
      "Save 413\n",
      "Save 415\n",
      "Save 424\n",
      "Save 425\n",
      "Save 426\n",
      "Save 428\n",
      "Save 435\n",
      "Save 440\n",
      "Save 442\n",
      "Save 457\n",
      "Save 466\n",
      "Save 470\n",
      "Save 475\n",
      "Save 485\n",
      "Save 487\n",
      "Save 491\n",
      "Save 494\n",
      "Save 496\n",
      "ASR_H2_TRANFORMED_OUT\n",
      "Save 0\n",
      "Save 4\n",
      "Save 5\n",
      "Save 6\n",
      "Save 10\n",
      "Save 13\n",
      "Save 14\n",
      "Save 16\n",
      "Save 19\n",
      "Save 20\n",
      "Save 23\n",
      "Save 27\n",
      "Save 29\n",
      "Save 31\n",
      "Save 34\n",
      "Save 35\n",
      "Save 39\n",
      "Save 44\n",
      "Save 47\n",
      "Save 48\n",
      "Save 51\n",
      "Save 52\n",
      "Save 54\n",
      "Save 56\n",
      "Save 57\n",
      "Save 59\n",
      "Save 60\n",
      "Save 63\n",
      "Save 64\n",
      "Save 67\n",
      "Save 68\n",
      "Save 70\n",
      "Save 71\n",
      "Save 75\n",
      "Save 77\n",
      "Save 78\n",
      "Save 80\n",
      "Save 81\n",
      "Save 84\n",
      "Save 85\n",
      "Save 90\n",
      "Save 91\n",
      "Save 94\n",
      "Save 97\n",
      "Save 100\n",
      "Save 102\n",
      "Save 104\n",
      "Save 106\n",
      "Save 108\n",
      "Save 109\n",
      "Save 111\n",
      "Save 113\n",
      "Save 116\n",
      "Save 117\n",
      "Save 120\n",
      "Save 121\n",
      "Save 123\n",
      "Save 126\n",
      "Save 128\n",
      "Save 129\n",
      "Save 130\n",
      "Save 133\n",
      "Save 134\n",
      "Save 137\n",
      "Save 138\n",
      "Save 139\n",
      "Save 140\n",
      "Save 142\n",
      "Save 143\n",
      "Save 146\n",
      "Save 147\n",
      "Save 149\n",
      "Save 152\n",
      "Save 156\n",
      "Save 157\n",
      "Save 161\n",
      "Save 163\n",
      "Save 165\n",
      "Save 170\n",
      "Save 172\n",
      "Save 175\n",
      "Save 176\n",
      "Save 178\n",
      "Save 179\n",
      "Save 183\n",
      "Save 184\n",
      "Save 185\n",
      "Save 188\n",
      "Save 189\n",
      "Save 191\n",
      "Save 197\n",
      "Save 200\n",
      "Save 205\n",
      "Save 207\n",
      "Save 209\n",
      "Save 211\n",
      "Save 213\n",
      "Save 214\n",
      "Save 217\n",
      "Save 218\n",
      "Save 219\n",
      "Save 220\n",
      "Save 221\n",
      "Save 225\n",
      "Save 226\n",
      "Save 228\n",
      "Save 229\n",
      "Save 232\n",
      "Save 237\n",
      "Save 238\n",
      "Save 242\n",
      "Save 245\n",
      "Save 246\n",
      "Save 248\n",
      "Save 250\n",
      "Save 251\n",
      "Save 252\n",
      "Save 254\n",
      "Save 256\n",
      "Save 259\n",
      "Save 262\n",
      "Save 263\n",
      "Save 273\n",
      "Save 277\n",
      "Save 279\n",
      "Save 281\n",
      "Save 283\n",
      "Save 284\n",
      "Save 295\n",
      "Save 298\n",
      "Save 300\n",
      "Save 301\n",
      "Save 302\n",
      "Save 310\n",
      "Save 313\n",
      "Save 321\n",
      "Save 324\n",
      "Save 325\n",
      "Save 332\n",
      "Save 334\n",
      "Save 343\n",
      "Save 350\n",
      "Save 351\n",
      "Save 354\n",
      "Save 361\n",
      "Save 364\n",
      "Save 365\n",
      "Save 369\n",
      "Save 376\n",
      "Save 378\n",
      "Save 387\n",
      "Save 389\n",
      "Save 399\n",
      "Save 404\n",
      "Save 410\n",
      "Save 411\n",
      "Save 412\n",
      "Save 413\n",
      "Save 414\n",
      "Save 423\n",
      "Save 424\n",
      "Save 425\n",
      "Save 428\n",
      "Save 436\n",
      "Save 438\n",
      "Save 440\n",
      "Save 441\n",
      "Save 443\n",
      "Save 446\n",
      "Save 448\n",
      "Save 453\n",
      "Save 454\n",
      "Save 456\n",
      "Save 457\n",
      "Save 458\n",
      "Save 462\n",
      "Save 466\n",
      "Save 468\n",
      "Save 473\n",
      "Save 479\n",
      "Save 480\n",
      "Save 481\n",
      "Save 482\n",
      "Save 483\n",
      "Save 486\n",
      "Save 496\n",
      "Save 498\n",
      "ASR_H1_TRANFORMED_OUT\n",
      "Save 0\n",
      "Save 4\n",
      "Save 5\n",
      "Save 6\n",
      "Save 7\n",
      "Save 9\n",
      "Save 12\n",
      "Save 19\n",
      "Save 20\n",
      "Save 24\n",
      "Save 27\n",
      "Save 30\n",
      "Save 31\n",
      "Save 34\n",
      "Save 38\n",
      "Save 39\n",
      "Save 40\n",
      "Save 43\n",
      "Save 45\n",
      "Save 48\n",
      "Save 50\n",
      "Save 56\n",
      "Save 57\n",
      "Save 58\n",
      "Save 60\n",
      "Save 62\n",
      "Save 64\n",
      "Save 66\n",
      "Save 68\n",
      "Save 70\n",
      "Save 72\n",
      "Save 73\n",
      "Save 74\n",
      "Save 76\n",
      "Save 77\n",
      "Save 83\n",
      "Save 87\n",
      "Save 91\n",
      "Save 93\n",
      "Save 96\n",
      "Save 99\n",
      "Save 101\n",
      "Save 103\n",
      "Save 104\n",
      "Save 109\n",
      "Save 110\n",
      "Save 113\n",
      "Save 117\n",
      "Save 122\n",
      "Save 125\n",
      "Save 128\n",
      "Save 133\n",
      "Save 136\n",
      "Save 138\n",
      "Save 139\n",
      "Save 142\n",
      "Save 144\n",
      "Save 148\n",
      "Save 150\n",
      "Save 152\n",
      "Save 155\n",
      "Save 158\n",
      "Save 161\n",
      "Save 162\n",
      "Save 165\n",
      "Save 168\n",
      "Save 169\n",
      "Save 171\n",
      "Save 173\n",
      "Save 176\n",
      "Save 178\n",
      "Save 179\n",
      "Save 182\n",
      "Save 185\n",
      "Save 189\n",
      "Save 190\n",
      "Save 191\n",
      "Save 196\n",
      "Save 197\n",
      "Save 198\n",
      "Save 202\n",
      "Save 203\n",
      "Save 208\n",
      "Save 212\n",
      "Save 214\n",
      "Save 216\n",
      "Save 218\n",
      "Save 225\n",
      "Save 226\n",
      "Save 228\n",
      "Save 229\n",
      "Save 231\n",
      "Save 234\n",
      "Save 235\n",
      "Save 238\n",
      "Save 242\n",
      "Save 250\n",
      "Save 254\n",
      "Save 257\n",
      "Save 265\n",
      "Save 268\n",
      "Save 269\n",
      "Save 271\n",
      "Save 273\n",
      "Save 275\n",
      "Save 276\n",
      "Save 278\n",
      "Save 279\n",
      "Save 282\n",
      "Save 283\n",
      "Save 284\n",
      "Save 286\n",
      "Save 292\n",
      "Save 293\n",
      "Save 296\n",
      "Save 297\n",
      "Save 299\n",
      "Save 301\n",
      "Save 307\n",
      "Save 310\n",
      "Save 311\n",
      "Save 312\n",
      "Save 313\n",
      "Save 318\n",
      "Save 321\n",
      "Save 324\n",
      "Save 325\n",
      "Save 326\n",
      "Save 329\n",
      "Save 330\n",
      "Save 332\n",
      "Save 333\n",
      "Save 335\n",
      "Save 337\n",
      "Save 340\n",
      "Save 349\n",
      "Save 351\n",
      "Save 352\n",
      "Save 353\n",
      "Save 355\n",
      "Save 359\n",
      "Save 362\n",
      "Save 365\n",
      "Save 366\n",
      "Save 368\n",
      "Save 370\n",
      "Save 372\n",
      "Save 373\n",
      "Save 378\n",
      "Save 387\n",
      "Save 395\n",
      "Save 401\n",
      "Save 402\n",
      "Save 403\n",
      "Save 407\n",
      "Save 408\n",
      "Save 413\n",
      "Save 415\n",
      "Save 418\n",
      "Save 420\n",
      "Save 421\n",
      "Save 422\n",
      "Save 423\n",
      "Save 426\n",
      "Save 431\n",
      "Save 432\n",
      "Save 433\n",
      "Save 435\n",
      "Save 436\n",
      "Save 438\n",
      "Save 440\n",
      "Save 441\n",
      "Save 442\n",
      "Save 444\n",
      "Save 445\n",
      "Save 448\n",
      "Save 453\n",
      "Save 459\n",
      "Save 460\n",
      "Save 467\n",
      "Save 469\n",
      "Save 472\n",
      "Save 474\n",
      "Save 476\n",
      "Save 481\n",
      "Save 484\n",
      "Save 488\n",
      "Save 491\n",
      "Save 495\n",
      "Save 499\n",
      "TRS_AE_OUT\n",
      "Save 0\n",
      "Save 3\n",
      "Save 4\n",
      "Save 5\n",
      "Save 6\n",
      "Save 7\n",
      "Save 8\n",
      "Save 9\n",
      "Save 13\n",
      "Save 15\n",
      "Save 16\n",
      "Save 17\n",
      "Save 18\n",
      "Save 23\n",
      "Save 24\n",
      "Save 25\n",
      "Save 26\n",
      "Save 29\n",
      "Save 30\n",
      "Save 31\n",
      "Save 34\n",
      "Save 37\n",
      "Save 39\n",
      "Save 42\n",
      "Save 44\n",
      "Save 45\n",
      "Save 46\n",
      "Save 48\n",
      "Save 50\n",
      "Save 51\n",
      "Save 52\n",
      "Save 56\n",
      "Save 59\n",
      "Save 60\n",
      "Save 66\n",
      "Save 68\n",
      "Save 71\n",
      "Save 72\n",
      "Save 74\n",
      "Save 78\n",
      "Save 81\n",
      "Save 82\n",
      "Save 84\n",
      "Save 86\n",
      "Save 89\n",
      "Save 91\n",
      "Save 94\n",
      "Save 95\n",
      "Save 99\n",
      "Save 102\n",
      "Save 104\n",
      "Save 105\n",
      "Save 109\n",
      "Save 111\n",
      "Save 117\n",
      "Save 120\n",
      "Save 122\n",
      "Save 124\n",
      "Save 126\n",
      "Save 130\n",
      "Save 131\n",
      "Save 135\n",
      "Save 147\n",
      "Save 152\n",
      "Save 154\n",
      "Save 163\n",
      "Save 164\n",
      "Save 166\n",
      "Save 171\n",
      "Save 173\n",
      "Save 177\n",
      "Save 186\n",
      "Save 189\n",
      "Save 193\n",
      "Save 194\n",
      "Save 196\n",
      "Save 200\n",
      "Save 207\n",
      "Save 209\n",
      "Save 216\n",
      "Save 219\n",
      "Save 221\n",
      "Save 223\n",
      "Save 225\n",
      "Save 226\n",
      "Save 236\n",
      "Save 237\n",
      "Save 239\n",
      "Save 242\n",
      "Save 249\n",
      "Save 250\n",
      "Save 256\n",
      "Save 257\n",
      "Save 260\n",
      "Save 262\n",
      "Save 267\n",
      "Save 275\n",
      "Save 277\n",
      "Save 278\n",
      "Save 279\n",
      "Save 282\n",
      "Save 284\n",
      "Save 285\n",
      "Save 286\n",
      "Save 289\n",
      "Save 301\n",
      "Save 313\n",
      "Save 317\n",
      "Save 322\n",
      "Save 326\n",
      "Save 327\n",
      "Save 334\n",
      "Save 345\n",
      "Save 350\n",
      "Save 353\n",
      "Save 359\n",
      "Save 362\n",
      "Save 364\n",
      "Save 365\n",
      "Save 369\n",
      "Save 373\n",
      "Save 376\n",
      "Save 382\n",
      "Save 384\n",
      "Save 388\n",
      "Save 401\n",
      "Save 404\n",
      "Save 409\n",
      "Save 415\n",
      "Save 418\n",
      "Save 420\n",
      "Save 421\n",
      "Save 432\n",
      "Save 436\n",
      "Save 450\n",
      "Save 454\n",
      "Save 455\n",
      "Save 459\n",
      "Save 467\n",
      "Save 480\n",
      "Save 484\n",
      "Save 496\n"
     ]
    }
   ],
   "source": [
    "nb_epochs=500\n",
    "for key in keys:\n",
    "    print key\n",
    "    try:\n",
    "        x_train=corps[\"TRS_SPARSE\"][\"TRAIN\"].todense()\n",
    "        x_dev=corps[key][\"DEV\"].todense()\n",
    "        x_test=corps[key][\"TEST\"].todense()\n",
    "    except :\n",
    "        x_train=corps[\"TRS_SPARSE\"][\"TRAIN\"].todense()\n",
    "        x_dev=corps[key][\"DEV\"]\n",
    "        x_test=corps[key][\"TEST\"]\n",
    "\n",
    "    out_db[key]=mlp.train_mlp(x_train,y_train,x_dev,y_dev,x_test,y_test,[256,128,256],dropouts=[0.5,0,0],sgd=Adam(lr=0.0001),epochs=nb_epochs,batch_size=8,save_pred=True,keep_histo=True,fit_verbose=0)\n",
    "out_db.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false,
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "TRS_SPARSE\n",
      "Save 0\n",
      "Save 4\n",
      "Save 5\n",
      "Save 6\n",
      "Save 7\n",
      "Save 9\n",
      "Save 10\n",
      "Save 12\n",
      "Save 16\n",
      "Save 17\n",
      "Save 18\n",
      "Save 19\n",
      "Save 22\n",
      "Save 24\n",
      "Save 28\n",
      "Save 29\n",
      "Save 33\n",
      "Save 34\n",
      "Save 35\n",
      "Save 36\n",
      "Save 38\n",
      "Save 39\n",
      "Save 42\n",
      "Save 44\n",
      "Save 46\n",
      "Save 48\n",
      "Save 50\n",
      "Save 57\n",
      "Save 60\n",
      "Save 64\n",
      "Save 65\n",
      "Save 74\n",
      "Save 76\n",
      "Save 78\n",
      "Save 83\n",
      "Save 88\n",
      "Save 92\n",
      "Save 102\n",
      "Save 104\n",
      "Save 106\n",
      "Save 108\n",
      "Save 115\n",
      "Save 119\n",
      "Save 121\n",
      "Save 123\n",
      "Save 128\n",
      "Save 133\n",
      "Save 134\n",
      "Save 136\n",
      "Save 141\n",
      "Save 146\n",
      "Save 153\n",
      "Save 162\n",
      "Save 165\n",
      "Save 169\n",
      "Save 171\n",
      "Save 173\n",
      "Save 175\n",
      "Save 177\n",
      "Save 182\n",
      "Save 189\n",
      "Save 193\n",
      "Save 197\n",
      "Save 202\n",
      "Save 205\n",
      "Save 211\n",
      "Save 215\n",
      "Save 216\n",
      "Save 233\n",
      "Save 238\n",
      "Save 251\n",
      "Save 254\n",
      "Save 262\n",
      "Save 266\n",
      "Save 269\n",
      "Save 274\n",
      "Save 277\n",
      "Save 280\n",
      "Save 282\n",
      "Save 286\n",
      "Save 290\n",
      "Save 291\n",
      "Save 294\n",
      "Save 298\n",
      "Save 301\n",
      "Save 303\n",
      "Save 310\n",
      "Save 314\n",
      "Save 319\n",
      "Save 323\n",
      "Save 334\n",
      "Save 339\n",
      "Save 359\n",
      "Save 363\n",
      "Save 365\n",
      "Save 375\n",
      "Save 380\n",
      "Save 382\n",
      "Save 388\n",
      "Save 390\n",
      "Save 393\n",
      "Save 396\n",
      "Save 406\n",
      "Save 412\n",
      "Save 422\n",
      "Save 433\n",
      "Save 438\n",
      "Save 452\n",
      "Save 459\n",
      "Save 464\n",
      "Save 475\n",
      "Save 485\n",
      "Save 493\n",
      "Save 494\n",
      "ASR_SPARSE\n",
      "Save 0\n",
      "Save 3\n",
      "Save 4\n",
      "Save 5\n",
      "Save 6\n",
      "Save 7\n",
      "Save 8\n",
      "Save 10\n",
      "Save 16\n",
      "Save 17\n",
      "Save 19\n",
      "Save 26\n",
      "Save 28\n",
      "Save 31\n",
      "Save 32\n",
      "Save 34\n",
      "Save 35\n",
      "Save 39\n",
      "Save 41\n",
      "Save 43\n",
      "Save 46\n",
      "Save 47\n",
      "Save 51\n",
      "Save 52\n",
      "Save 53\n",
      "Save 55\n",
      "Save 57\n",
      "Save 60\n",
      "Save 61\n",
      "Save 63\n",
      "Save 66\n",
      "Save 68\n",
      "Save 71\n",
      "Save 73\n",
      "Save 75\n",
      "Save 77\n",
      "Save 79\n",
      "Save 83\n",
      "Save 85\n",
      "Save 90\n",
      "Save 93\n",
      "Save 94\n",
      "Save 96\n",
      "Save 99\n",
      "Save 101\n",
      "Save 102\n",
      "Save 104\n",
      "Save 106\n",
      "Save 109\n",
      "Save 112\n",
      "Save 113\n",
      "Save 117\n",
      "Save 123\n",
      "Save 126\n",
      "Save 127\n",
      "Save 129\n",
      "Save 130\n",
      "Save 133\n",
      "Save 137\n",
      "Save 142\n",
      "Save 145\n",
      "Save 146\n",
      "Save 147\n",
      "Save 148\n",
      "Save 149\n",
      "Save 151\n",
      "Save 152\n",
      "Save 155\n",
      "Save 157\n",
      "Save 160\n",
      "Save 164\n",
      "Save 167\n",
      "Save 173\n",
      "Save 176\n",
      "Save 177\n",
      "Save 184\n",
      "Save 189\n",
      "Save 193\n",
      "Save 195\n",
      "Save 196\n",
      "Save 204\n",
      "Save 209\n",
      "Save 212\n",
      "Save 215\n",
      "Save 218\n",
      "Save 219\n",
      "Save 221\n",
      "Save 223\n",
      "Save 226\n",
      "Save 229\n",
      "Save 231\n",
      "Save 237\n",
      "Save 239\n",
      "Save 242\n",
      "Save 244\n",
      "Save 246\n",
      "Save 249\n",
      "Save 250\n",
      "Save 255\n",
      "Save 258\n",
      "Save 259\n",
      "Save 261\n",
      "Save 263\n",
      "Save 267\n",
      "Save 271\n",
      "Save 274\n",
      "Save 276\n",
      "Save 277\n",
      "Save 279\n",
      "Save 283\n",
      "Save 284\n",
      "Save 286\n",
      "Save 288\n",
      "Save 289\n",
      "Save 298\n",
      "Save 301\n",
      "Save 304\n",
      "Save 310\n",
      "Save 314\n",
      "Save 318\n",
      "Save 321\n",
      "Save 331\n",
      "Save 338\n",
      "Save 340\n",
      "Save 342\n",
      "Save 347\n",
      "Save 351\n",
      "Save 352\n",
      "Save 353\n",
      "Save 357\n",
      "Save 367\n",
      "Save 379\n",
      "Save 384\n",
      "Save 388\n",
      "Save 390\n",
      "Save 392\n",
      "Save 394\n",
      "Save 398\n",
      "Save 399\n",
      "Save 401\n",
      "Save 405\n",
      "Save 409\n",
      "Save 411\n",
      "Save 414\n",
      "Save 415\n",
      "Save 419\n",
      "Save 427\n",
      "Save 431\n",
      "Save 436\n",
      "Save 438\n",
      "Save 440\n",
      "Save 445\n",
      "Save 454\n",
      "Save 456\n",
      "Save 466\n",
      "Save 469\n",
      "Save 481\n",
      "Save 484\n",
      "Save 492\n",
      "Save 494\n",
      "Save 498\n",
      "ASR_H2_TRANFORMED_OUT\n",
      "Save 0\n",
      "Save 4\n",
      "Save 5\n",
      "Save 6\n",
      "Save 7\n",
      "Save 8\n",
      "Save 9\n",
      "Save 11\n",
      "Save 12\n",
      "Save 13\n",
      "Save 15\n",
      "Save 18\n",
      "Save 20\n",
      "Save 24\n",
      "Save 27\n",
      "Save 29\n",
      "Save 33\n",
      "Save 34\n",
      "Save 36\n",
      "Save 39\n",
      "Save 42\n",
      "Save 44\n",
      "Save 46\n",
      "Save 47\n",
      "Save 48\n",
      "Save 50\n",
      "Save 55\n",
      "Save 58\n",
      "Save 59\n",
      "Save 61\n",
      "Save 63\n",
      "Save 64\n",
      "Save 65\n",
      "Save 66\n",
      "Save 70\n",
      "Save 71\n",
      "Save 74\n",
      "Save 75\n",
      "Save 77\n",
      "Save 79\n",
      "Save 81\n",
      "Save 86\n",
      "Save 90\n",
      "Save 93\n",
      "Save 96\n",
      "Save 98\n",
      "Save 100\n",
      "Save 103\n",
      "Save 107\n",
      "Save 108\n",
      "Save 109\n",
      "Save 110\n",
      "Save 112\n",
      "Save 114\n",
      "Save 117\n",
      "Save 118\n",
      "Save 119\n",
      "Save 122\n",
      "Save 123\n",
      "Save 125\n",
      "Save 127\n",
      "Save 129\n",
      "Save 131\n",
      "Save 133\n",
      "Save 135\n",
      "Save 138\n",
      "Save 139\n",
      "Save 142\n",
      "Save 143\n",
      "Save 149\n",
      "Save 151\n",
      "Save 159\n",
      "Save 161\n",
      "Save 162\n",
      "Save 164\n",
      "Save 166\n",
      "Save 168\n",
      "Save 172\n",
      "Save 174\n",
      "Save 178\n",
      "Save 181\n",
      "Save 182\n",
      "Save 184\n",
      "Save 192\n",
      "Save 193\n",
      "Save 194\n",
      "Save 196\n",
      "Save 201\n",
      "Save 206\n",
      "Save 207\n",
      "Save 211\n",
      "Save 214\n",
      "Save 215\n",
      "Save 218\n",
      "Save 220\n",
      "Save 221\n",
      "Save 225\n",
      "Save 226\n",
      "Save 230\n",
      "Save 232\n",
      "Save 233\n",
      "Save 235\n",
      "Save 236\n",
      "Save 241\n",
      "Save 242\n",
      "Save 244\n",
      "Save 245\n",
      "Save 247\n",
      "Save 256\n",
      "Save 261\n",
      "Save 262\n",
      "Save 263\n",
      "Save 266\n",
      "Save 267\n",
      "Save 269\n",
      "Save 277\n",
      "Save 280\n",
      "Save 282\n",
      "Save 287\n",
      "Save 290\n",
      "Save 294\n",
      "Save 295\n",
      "Save 296\n",
      "Save 298\n",
      "Save 303\n",
      "Save 306\n",
      "Save 308\n",
      "Save 309\n",
      "Save 312\n",
      "Save 319\n",
      "Save 323\n",
      "Save 329\n",
      "Save 332\n",
      "Save 335\n",
      "Save 345\n",
      "Save 348\n",
      "Save 349\n",
      "Save 353\n",
      "Save 355\n",
      "Save 363\n",
      "Save 364\n",
      "Save 365\n",
      "Save 371\n",
      "Save 372\n",
      "Save 373\n",
      "Save 374\n",
      "Save 375\n",
      "Save 376\n",
      "Save 378\n",
      "Save 381\n",
      "Save 385\n",
      "Save 386\n",
      "Save 388\n",
      "Save 391\n",
      "Save 396\n",
      "Save 400\n",
      "Save 405\n",
      "Save 409\n",
      "Save 411\n",
      "Save 418\n",
      "Save 421\n",
      "Save 427\n",
      "Save 428\n",
      "Save 431\n",
      "Save 432\n",
      "Save 434\n",
      "Save 437\n",
      "Save 442\n",
      "Save 443\n",
      "Save 445\n",
      "Save 447\n",
      "Save 448\n",
      "Save 451\n",
      "Save 452\n",
      "Save 453\n",
      "Save 457\n",
      "Save 460\n",
      "Save 461\n",
      "Save 465\n",
      "Save 466\n",
      "Save 477\n",
      "Save 484\n",
      "Save 486\n",
      "Save 489\n",
      "Save 496\n",
      "Save 498\n",
      "ASR_H1_TRANFORMED_OUT\n",
      "Save 0\n",
      "Save 4\n",
      "Save 5\n",
      "Save 6\n",
      "Save 7\n",
      "Save 9\n",
      "Save 11\n",
      "Save 14\n",
      "Save 15\n",
      "Save 24\n",
      "Save 26\n",
      "Save 30\n",
      "Save 32\n",
      "Save 35\n",
      "Save 38\n",
      "Save 39\n",
      "Save 42\n",
      "Save 46\n",
      "Save 48\n",
      "Save 50\n",
      "Save 51\n",
      "Save 54\n",
      "Save 55\n",
      "Save 57\n",
      "Save 59\n",
      "Save 62\n",
      "Save 65\n",
      "Save 66\n",
      "Save 70\n",
      "Save 71\n",
      "Save 73\n",
      "Save 75\n",
      "Save 76\n",
      "Save 79\n",
      "Save 81\n",
      "Save 86\n",
      "Save 89\n",
      "Save 91\n",
      "Save 93\n",
      "Save 94\n",
      "Save 95\n",
      "Save 99\n",
      "Save 101\n",
      "Save 102\n",
      "Save 103\n",
      "Save 106\n",
      "Save 107\n",
      "Save 109\n",
      "Save 111\n",
      "Save 113\n",
      "Save 115\n",
      "Save 117\n",
      "Save 118\n",
      "Save 120\n",
      "Save 126\n",
      "Save 127\n",
      "Save 129\n",
      "Save 133\n",
      "Save 134\n",
      "Save 135\n",
      "Save 139\n",
      "Save 140\n",
      "Save 144\n",
      "Save 148\n",
      "Save 150\n",
      "Save 153\n",
      "Save 155\n",
      "Save 156\n",
      "Save 157\n",
      "Save 159\n",
      "Save 160\n",
      "Save 162\n",
      "Save 164\n",
      "Save 168\n",
      "Save 169\n",
      "Save 171\n",
      "Save 175\n",
      "Save 177\n",
      "Save 180\n",
      "Save 182\n",
      "Save 183\n",
      "Save 186\n",
      "Save 189\n",
      "Save 191\n",
      "Save 195\n",
      "Save 198\n",
      "Save 200\n",
      "Save 201\n",
      "Save 202\n",
      "Save 206\n",
      "Save 208\n",
      "Save 209\n",
      "Save 213\n",
      "Save 214\n",
      "Save 215\n",
      "Save 217\n",
      "Save 219\n",
      "Save 220\n",
      "Save 234\n",
      "Save 236\n",
      "Save 237\n",
      "Save 239\n",
      "Save 241\n",
      "Save 244\n",
      "Save 249\n",
      "Save 250\n",
      "Save 251\n",
      "Save 254\n",
      "Save 256\n",
      "Save 257\n",
      "Save 261\n",
      "Save 263\n",
      "Save 264\n",
      "Save 265\n",
      "Save 269\n",
      "Save 271\n",
      "Save 273\n",
      "Save 276\n",
      "Save 277\n",
      "Save 279\n",
      "Save 280\n",
      "Save 287\n",
      "Save 288\n",
      "Save 290\n",
      "Save 291\n",
      "Save 294\n",
      "Save 296\n",
      "Save 301\n",
      "Save 307\n",
      "Save 309\n",
      "Save 310\n",
      "Save 315\n",
      "Save 318\n",
      "Save 322\n",
      "Save 325\n",
      "Save 328\n",
      "Save 330\n",
      "Save 331\n",
      "Save 332\n",
      "Save 334\n",
      "Save 339\n",
      "Save 341\n",
      "Save 342\n",
      "Save 343\n",
      "Save 352\n",
      "Save 357\n",
      "Save 361\n",
      "Save 364\n",
      "Save 369\n",
      "Save 371\n",
      "Save 374\n",
      "Save 381\n",
      "Save 384\n",
      "Save 385\n",
      "Save 389\n",
      "Save 392\n",
      "Save 393\n",
      "Save 397\n",
      "Save 399\n",
      "Save 401\n",
      "Save 403\n",
      "Save 407\n",
      "Save 409\n",
      "Save 410\n",
      "Save 411\n",
      "Save 413\n",
      "Save 416\n",
      "Save 421\n",
      "Save 425\n",
      "Save 427\n",
      "Save 435\n",
      "Save 438\n",
      "Save 440\n",
      "Save 441\n",
      "Save 446\n",
      "Save 447\n",
      "Save 449\n",
      "Save 450\n",
      "Save 451\n",
      "Save 452\n",
      "Save 454\n",
      "Save 458\n",
      "Save 460\n",
      "Save 461\n",
      "Save 463\n",
      "Save 470\n",
      "Save 475\n",
      "Save 480\n",
      "Save 481\n",
      "Save 482\n",
      "Save 483\n",
      "Save 488\n",
      "Save 494\n",
      "Save 497\n",
      "Save 499\n",
      "TRS_AE_OUT\n",
      "Save 0\n",
      "Save 3\n",
      "Save 4\n",
      "Save 5\n",
      "Save 6\n",
      "Save 7\n",
      "Save 8\n",
      "Save 10\n",
      "Save 12\n",
      "Save 15\n",
      "Save 17\n",
      "Save 18\n",
      "Save 20\n",
      "Save 23\n",
      "Save 28\n",
      "Save 29\n",
      "Save 30\n",
      "Save 33\n",
      "Save 34\n",
      "Save 37\n",
      "Save 40\n",
      "Save 42\n",
      "Save 46\n",
      "Save 47\n",
      "Save 49\n",
      "Save 54\n",
      "Save 55\n",
      "Save 57\n",
      "Save 58\n",
      "Save 60\n",
      "Save 63\n",
      "Save 67\n",
      "Save 69\n",
      "Save 71\n",
      "Save 74\n",
      "Save 76\n",
      "Save 79\n",
      "Save 84\n",
      "Save 86\n",
      "Save 88\n",
      "Save 94\n",
      "Save 96\n",
      "Save 104\n",
      "Save 105\n",
      "Save 107\n",
      "Save 108\n",
      "Save 112\n",
      "Save 116\n",
      "Save 118\n",
      "Save 121\n",
      "Save 127\n",
      "Save 130\n",
      "Save 131\n",
      "Save 132\n",
      "Save 135\n",
      "Save 136\n",
      "Save 141\n",
      "Save 144\n",
      "Save 145\n",
      "Save 147\n",
      "Save 148\n",
      "Save 149\n",
      "Save 152\n",
      "Save 154\n",
      "Save 156\n",
      "Save 157\n",
      "Save 159\n",
      "Save 163\n",
      "Save 165\n",
      "Save 167\n",
      "Save 172\n",
      "Save 176\n",
      "Save 178\n",
      "Save 180\n",
      "Save 190\n",
      "Save 192\n",
      "Save 197\n",
      "Save 198\n",
      "Save 201\n",
      "Save 203\n",
      "Save 210\n",
      "Save 215\n",
      "Save 218\n",
      "Save 220\n",
      "Save 225\n",
      "Save 229\n",
      "Save 239\n",
      "Save 241\n",
      "Save 243\n",
      "Save 246\n",
      "Save 257\n",
      "Save 259\n",
      "Save 266\n",
      "Save 270\n",
      "Save 272\n",
      "Save 276\n",
      "Save 279\n",
      "Save 281\n",
      "Save 286\n",
      "Save 288\n",
      "Save 289\n",
      "Save 292\n",
      "Save 294\n",
      "Save 299\n",
      "Save 307\n",
      "Save 310\n",
      "Save 311\n",
      "Save 312\n",
      "Save 316\n",
      "Save 319\n",
      "Save 328\n",
      "Save 336\n",
      "Save 337\n",
      "Save 340\n",
      "Save 350\n",
      "Save 353\n",
      "Save 354\n",
      "Save 358\n",
      "Save 360\n",
      "Save 367\n",
      "Save 368\n",
      "Save 374\n",
      "Save 378\n",
      "Save 384\n",
      "Save 385\n",
      "Save 388\n",
      "Save 391\n",
      "Save 393\n",
      "Save 401\n",
      "Save 405\n",
      "Save 412\n",
      "Save 418\n",
      "Save 419\n",
      "Save 421\n",
      "Save 428\n",
      "Save 429\n",
      "Save 431\n",
      "Save 433\n",
      "Save 436\n",
      "Save 439\n",
      "Save 440\n",
      "Save 443\n",
      "Save 455\n",
      "Save 456\n",
      "Save 461\n",
      "Save 466\n",
      "Save 467\n",
      "Save 471\n",
      "Save 475\n",
      "Save 476\n",
      "Save 478\n",
      "Save 482\n",
      "Save 487\n",
      "Save 494\n",
      "Save 495\n",
      "Save 496\n"
     ]
    }
   ],
   "source": [
    "out_db=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\",writeback=True)\n",
    "nb_epochs=500\n",
    "for key in keys:\n",
    "    print key\n",
    "    try:\n",
    "        x_train=corps[\"ASR_SPARSE\"][\"TRAIN\"].todense()\n",
    "        x_dev=corps[key][\"DEV\"].todense()\n",
    "        x_test=corps[key][\"TEST\"].todense()\n",
    "    except :\n",
    "        x_train=corps[\"ASR_SPARSE\"][\"TRAIN\"].todense()\n",
    "        x_dev=corps[key][\"DEV\"]\n",
    "        x_test=corps[key][\"TEST\"]\n",
    "\n",
    "    out_db[key]=mlp.train_mlp(x_train,y_train,x_dev,y_dev,x_test,y_test,[256,128,256],dropouts=[0.5,0,0],sgd=Adam(lr=0.0001),epochs=nb_epochs,batch_size=8,save_pred=True,keep_histo=True,fit_verbose=0)\n",
    "out_db.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['ASR_H1_TRANFORMED_OUT', 'ASR_H2_TRANFORMED_OUT', 'TRS_AE_OUT', 'TRS_SPARSE', 'ASR_SPARSE']\n"
     ]
    }
   ],
   "source": [
    "out_db=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\")\n",
    "print out_db.keys()\n",
    "out_db.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false,
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ASR_H1_TRANFORMED_OUT 0.697\n",
      "ASR_H2_TRANFORMED_OUT 0.682\n",
      "TRS_AE_OUT 0.838\n",
      "TRS_SPARSE 0.841\n",
      "ASR_SPARSE 0.78\n"
     ]
    }
   ],
   "source": [
    "data=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\")\n",
    "scores={}\n",
    "#del scores_ordoned\n",
    "for key,table in data.iteritems():\n",
    "    scores[key]=round(table[1][np.argmax([x[0] for x in table[0]])][0],3)\n",
    "    print key,scores[key]\n",
    "    pandas.DataFrame(zip([x[0] for x in data[key][0] ],[x[0] for x in data[key][1] ])).plot()\n",
    "data.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ASR_H1_TRANFORMED_OUT 0.688\n",
      "ASR_H2_TRANFORMED_OUT 0.654\n",
      "TRS_AE_OUT 0.832\n",
      "TRS_SPARSE 0.832\n",
      "ASR_SPARSE 0.734\n"
     ]
    }
   ],
   "source": [
    "data=shelve.open(\"scores/RAW_TRS_TRAIN.shelve\")\n",
    "scores={}\n",
    "#del scores_ordoned\n",
    "for key,table in data.iteritems():\n",
    "    scores[key]=round(table[1][np.argmax([x[0] for x in table[0]])][0],3)\n",
    "    print key,scores[key]\n",
    "    pandas.DataFrame(zip([x[0] for x in data[key][0] ],[x[0] for x in data[key][1] ])).plot()\n",
    "data.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ASR_H1_TRANFORMED_OUT 0.697\n",
      "ASR_H2_TRANFORMED_OUT 0.682\n",
      "TRS_AE_OUT 0.838\n",
      "TRS_SPARSE 0.841\n",
      "ASR_SPARSE 0.78\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMX6x79nW5It6T2Q0BJCh0hRQLpIEwEbKqiAFbte\n9SoqWH/YvSqIDVAuiopSpCoXERG49J6Q0NJD+maz2b7n98fL7J7tGxLvgp7P8+RJsnv27Jz2ne+8\n884Mx/M8REREREQuTyShLoCIiIiIyMUjiriIiIjIZYwo4iIiIiKXMaKIi4iIiFzGiCIuIiIichkj\niriIiIjIZUxQIs5x3BiO4/I4jsvnOO4ZL+/HcRy3keO4QxzHHeU47q5WL6mIiIiIiAdcoDxxjuMk\nAPIBjARQBmAvgKk8z+cJtpkLIJzn+Wc5josHcBJAEs/z1j+t5CIiIiIiQTnx/gAKeJ4v5HneAmAF\ngOvdtqkAoLnwtwZAjSjgIiIiIn8+siC2SQNQLPi/BCTsQj4D8B+O48oAqAHc0jrFExERERHxR2t1\nbD4L4DDP86kA+gBYwHGcupX2LSIiIiLig2CceCmAdMH/bS68JmQQgNcAgOf50xzHnQWQDWCfcCOO\n48SJWkREREQuAp7nOW+vB+PE9wLoxHFcBsdxCgBTAax12yYXwCgA4DguCUAWgDM+CiL+8Dzmzp0b\n8jJcKj/iuRDPhXg+/P/4I6AT53nexnHcQwB+Bon+FzzP53Icdx+9zX8K4P8ALOE47jAADsDTPM/X\nBtq3iIiIiEjLCCacAp7nNwHo7PbaJ4K/qwFc17pFExEREREJhDhiM0QMGzYs1EW4ZBDPhRPxXLgi\nno/ABBzs06pfxnH8//L7RERERP4KcBwHvgUdmyIiIiKXLO3atQPHcX+Jn3bt2jX7+EUnLiIicllz\nwaWGuhitgq9jEZ24iIiIyF8UUcRFRERELmNEERcRERG5jLlkRLyxMdQlEBEREbn8uGREXKMBzp0L\ndSlEREREWpe6ujpMnjwZarUa7du3xzfffNOq+w9qxOb/irIy4CIybEREREQuWWbPno3w8HBUVVXh\nwIEDGD9+PHr37o0uXbq0yv4viRRDiwVQKIDVq4Hr3ZebEBEREfHDpZxi2NTUhJiYGJw4cQIdO3YE\nANx5551IS0vD66+/7rH9ZZtiqNfT71L3CW5FRERELmPy8/Mhl8sdAg4AvXr1wvHjx1vtOy6JcArr\n1BRFXERE5M+A8+phm8fFmP3GxkZERka6vBYZGQmdTtfyAl1AFHEREZG/PKGKtqjVajQ0NLi8ptVq\nodFofHyi+YQ8nHL6NDBnDv0tiriIiMhfiaysLFitVpw+fdrx2uHDh9GtW7dW+46Qi3huLvDjj0BE\nBFArLiMhIiLyF0KpVGLKlCl48cUX0dTUhB07duCnn37C9OnTW+07Qi7iTU30u00boL6ecsU/+CCk\nRRIRERFpNRYsWICmpiYkJiZi2rRpWLRoUaulFwKXQIrh0qXAjBnAsGHAkSPAiBHAypWhi2GJiIhc\nXlzKKYbN5bJMMWROPC0N0GqBLVtCWx4RERGRy4lLRsSjoykuXl9PQ/BFRERERAJzyYi4Wk1CLpMB\ndntoyyQiIiJyuXDJiLhKRSKemQkYDIDNFtpyiYiIiFwOXDIizpx4mzb0tzg1rYiIiEhgLgkRHzEC\nGDCARDwtjWLiboOcRERERES8EHIR1+uBWbOAgQOdIh4ZCbTi1AIiIiIif1lCLuJNTYBSSX9fdRVw\n5ZWiExcREREJlktKxGfPBiZMEJ24iIiISLBcUiLOEJ24iIjIX4UFCxagX79+CA8Px8yZM1t9/0GJ\nOMdxYziOy+M4Lp/juGe8vP8PjuMOchx3gOO4oxzHWTmOiw5m395EXHTiIiIifxXS0tLwwgsvYNas\nWX/K/gPOJ85xnATARwBGAigDsJfjuDU8z+exbXiefxvA2xe2nwDgMZ7n64MpgC8R12qDPQQRERGR\nS5dJkyYBAPbu3YvSP2G+7WCceH8ABTzPF/I8bwGwAoC/lTBvBRD0cs5NTTTQR0hcnDgtrYiIiEgw\nBLOyTxqAYsH/JSBh94DjuAgAYwA8GMyXf/45UFJCg3uExMcDJ04EswcRERGRwHAvtXx9Nn7upTlT\nYmsvz3YdgB3BhlK2bwceewyIiXF9PT4eqKpq5ZKJiIj8bblUBbg1CEbESwGkC/5vc+E1b0xFgFDK\nvHnzHH+XlAzDuHHD8N3x77A6bzWWXL8EYbIwxMcD1dVBlExERETkL8i2bduwbdu2oLYNuCgEx3FS\nACdBHZvlAPYAuJXn+Vy37aIAnAHQhud5g499uSwKMXkycMcdwGLjdViXvw4nHzqJrLgsHD4MTJ9O\ni0SIiIiI+ONSXxTCZrPBYrHg5ZdfRklJCT777DPIZDJIpVKPbf+URSF4nrcBeAjAzwCOA1jB83wu\nx3H3cRx3r2DTSQA2+xJwbxiNQHg4kF+Tj9iIWJTryvF74e+Ij+dFJy4iIvKX4NVXX4VSqcQbb7yB\n5cuXQ6lU4rXXXmu1/Yd0ebYRI4Bn51hx3S41ru10LW7tfivuW3cfdt65D30yMmEyAVzL+yNERET+\nwlzqTrw5XHbLs5lMQK39HFI0KWgX1Q5F2iI0mBpQYShCeLg44EdEREQkECEVcaMR2KfdgD7JfZCi\nScHxquMAgCJtEdLSgKKiUJZORERE5NIn5E78y9PzMXfoXKRqUnGs8hgAEvHsbCAvL8AORERERP7m\nhNaJm3jUmM6jW2I3pGpSkVtFCS/zfpsHdP1eFHERERGRAIRUxA3WJoRJwyGTyNAhpgMMVgPkEjkA\nQBu3Fbm5AXYgIiIi8jentUdsNgsj3wC1XAMAyIjKgFwix209bkOyOhl55+px5kwoSyciIiJy6RPa\nmDgaEBkWCQCQSqToGNsR8cp49E3ti0Z7FfT6UJZORETkciAjIwMcx/0lfjIyMpp9/CF14iZeh6jw\nSMf/WXFZiI2IRYIyAVprJZqaQlg4ERGRy4Jz586FugghJWQizvOAVdrgIuLTe05HmiYN0eHRqDNX\niSIuIiIiEoCQibjJBMiUOmjCNI7Xbux6IwCguqkaNcZK8KKIi4iIiPgltCKucsbEhcRGxKLRogOM\nFgDy/33hRERERC4TQtax6RBxhaeISzgJYiNiYQ+vhsUSgsKJiIiIXCaETMSNRkAS4RpOEaJWqBER\n2QhD0HMiioiIiPz9CKkTl0R4D6cAgEquQphGL6YZinhlxQrgb56UICICIMQxcRLxVK/vqxQqhKmb\nxAwVEa988QVgswHt2oW6JCIioSWk4RRObkCELMLr+yq5CmFqvSjilyD79wOnToW2DDqduIQfACxa\nBPz0U6hLIRJKQhpO4eQmhMnCvL6vUqggV4kifinyxRfA6tWhLUNDg7iYNgA88ADw1FOhLoVIKAmt\niMvMUEgVXt9XypWQRYgifiliNod+wQ7RidMzBNC8+zZbaMsiEjpCJuJmMwCpbxFXyVWQiiJ+SWI2\nA42NoS1DQ4Mo4jodEBsLxMeLC6j8nQmZiNtsCCzi4WLHZksxGIDz51t3n6F24jwvOnGAzoFGA2Rn\nQ5y2+W9MyETcbgd4iR8RV6jAhYlOvKW8/DKQnNy6+zSZQuvE9XoS8r97TLyhAYiMBNq3BwoLQ10a\nkVARUidu5/w7cU4hinhLBztFR9PvmpqWl4URaieu0wFSKWXIGI3/m+9s7UFn7L42m+nvs2fR7DER\nzIlHRPzvzoPIpUdIRdyfE1fKleAU+pB3oIWSwkKgX7+W7cNup9+//97y8jBCHRNvaADS0ykWPHXq\nn/99v/wCKJWtt7/qaiAtjdaQTUsDhg8H+vYF7rmnefvR6ciJh4eLIv535pIVcZVCBUmEvlUd5OVG\nVVXLQwZMbIuLW14eRqhFXKcDwjIO4d11P2HrVqC+nsIr7Ke1OX364j7nq0wnTlCZ77+fBD0vD9i4\nETh6NLj9sb8bGsiJiyLeOvwZ987/gpDGxAOFUySKpr9151VDQ8vFUq8HEhKA0tLWKRMQ+nBKcU0N\nTg8cjenrbsC46/WIiQEkEvqRSoFVq3x/9h//AL7+unnfdzEC+cknzjK98ILre7m55MB37gTuvReY\nNg3o3p3CQ75SBTduBGQyct46HZCSQq2QyMi/bzjl+HFgzJjW2dfixZdvvv0l7cQh1/+tO690OoqX\nspDIxdDYCGRlta6Im8w26BpbUKgW8lvZesTpB6NzfGc8+9YpF8f75Zf044tdu4C9e5v3fSwfuzks\nWQL8/DP9dm8F5eUBjz1GleEnnwALFlC4JimJYuPe+Oor4OOPgQ4dgP/8x5lx9Hd24vv3A4cOtc6+\nli6lc3w55ttf0h2bNpn+b+/EAbSoc1evJxEvK2udMgFAcdYc1GYs9vn+0qXAN9+03ve5U9fYBLUk\nAZmxmcivyXd5b/x4YOtWz05CqxWYNIlCFsGm402YAGRk0AjV5lBaCuTnA8OGOZ2zkLw8Sgt0p3Nn\n+pw7PE9OfOJE+tyqVbRvgJz+5STiPE99GU8/3bL9LFgAvPUWUFmJFk9XXVkJHDkCtG0LXH118z//\n4ovAr7+2rAwt4ZIVcbVCDQt0ooij+VkLQv4MJ26RaGGS1PqMIR45Auzb13rf5055lQFxkRHIisvy\nEPHYWKB/f3LBQv74A1izhs5lXl5w3/P77yScBQXNK9/atcC4cUB+3XG8Xnyt4zoycnO9i3hsLMXK\n3ampIbFOTga6dCER79aN3isvv7xEXK+n4/nvfy9+HzwPfPABcOwY/V1e3rIy/fQTcO21wPbtFKJp\nTj+c2Uxl+fzzlpWhJVyyMfFEVSLqLOf/tiK+eDHwf/9Hf7O4+EsvNV+M9XpyeBcj4kuWkPi5Y4MF\nvNToM+2uqenPG4jz1FPA3kNGJMWFIzs+G/vKPWuLyZNJSBm5ucB99wFduwIDBlAoIlDrhqX+9e7t\n+vqaNcCPPzr/37DBNQa/ZQvl5k+ezOPhjQ/jsPZXNOictV1TE31/+/ae36lSAevXe8ZmS0sphg6Q\niOt09BugePilIuK7d1OrZc8e4JprSBAZL7xAbpVVUu59PZ98Qlk63lz1ww+ToTlyhPoQ8vPp8xoN\nEBUF/PYbcNddzu0ff5xaKv76Rhi//gr885/AlCl0/rOzg6/kLRbgxhupcl27FnjvveA+19oEJeIc\nx43hOC6P47h8juOe8bHNMI7jDnIcd4zjuICNi0BOPEWTgsqmCjTo+L/l6j5PP+0UXubElywBDh5s\n3n4aG6kTzGCgkEJzWLWKmvHu2HgrIDX57HRtavrzBuK8/TZQrzMiNSECN3S5AXtK92BX8S6XbQYM\ncI2Vfv45CcT+/cB331FzPpDbqqkB4uKoU1jIjz+6PqyrV1MKIuOdd6jzVN5tHaqbqiGXyFHf5DxR\n+flAp07UAeuOWk2drm+/7fq6UMQnTybRmjGDwgAffnjpiPiHH1IF9uGH1En72WfO9159FXjwQRLx\nsDCgrs71s6tXA9u2AbW1rq83NgIffQSsWwfMm0f7PHQIuOoqCo2NGEHnW9gP8t13dM8Hk1a7Ywcw\naBBw8830f3NEfPt2SgPevp3ugVdfbXlo52IIKOIcx0kAfATgWgDdANzKcVy22zZRABYAmMDzfHcA\nNwXabyARV8qVCJeFIzq5zuPC/h2Ii3P+3dhILZeysubHthsbSRzUas/Y7I8/+g8VlJZSJ9rSpa6v\n23gr5EqjzwwVb05cq6VmZ6sgNyA1KRyaMA3eGPUGHtn0CHhBbIfFlgsKaKrW1avJiYeHA23a0AAo\nb2ELIdXVJPbx8c7XeJ4e8J07SUABcvnsWHU6arnccw9wrOooJmRNQEx4HBosVGOYzRQ/9RZKAega\nCb+LUVoKpF6Ydl+hAIYMoY7QhAT6fTEi/sYbdG/U1wOzZ3tvcTWHr74iobVYgG+/pfO+fLlrqyU3\nl8S7fXvP819RQb+FoafycuCRR+jvV15xOmsWjsrIoMqNXQuAzlt1NcW2A11jgMzG8OEAx9H/zZnC\nYM0a4JZbgMRE4MorgY4dSdBbm0AtimCceH8ABTzPF/I8bwGwAsD1btvcBuAHnudLAYDn+YCNaauV\nhw1myCW+F0JO0aQgKq38bxlSEYq4Xk83psVyceEUtdp7B9uSJdT890VpKTWR33zT9XU7LAhX+Xfi\n7tds1SrguedalotrtVKa3ZSbjYiMCAcA3N7jdhTWF6JMV4Y6Qx0Olh+ERkPx5Wefpalaq6qAXr2c\n+4mO9nSC7lRVkUgKnbjFQg94jx5Op5+X5zzWo0cpzBEZCTSYGqBRaBCnjIPOSi7k5En63Msve/9O\nlcr5t1CYhE7cG80V8cpKCiHs3w98/z39vPRS8J93x2KhEMby5cDmzRQSGj2aWhT/+Add83C6XCgu\nJvHVal2zrkpLyT0L71GW3XP99RSOWbSInou8PGc46fHHyXlLpXQOdDqq6JKTA19jwFlZMxITg4+J\n79vn2hE6eXJwIZzmsmGD//eDWdknDYAwSaoEJOxCsgDIL4RR1AA+4Hl+mb+dWu02cJBAKvHSrrxA\nijoFVUnlqK7uFkQx/1oIRby2Fvj0U/pbKOI2G900N97oez/MiWs08Ohgq6/3XSksW0ZCxnHkaC0W\nQH6hvrXBCoXSGFDET5ygz1ss5ML1eqCkhB40kwno08f/OXCnooIeuNhEAyLktJgIx3HIScnB/vL9\nKNYW46f8n7Bp2iZkZzuPNzvb6bQA30585UrKYJHJvDvxwkISo0GDSMzr62k7JuLCDssGUwPaRrZF\ngioOx7ga2O0kPn37OgXIHaETf/55cnldu1Kcec4c3+clkIgfOECC+csvdN5ZuKC6mlop8+eTGM6d\n6zxPY8ZQvNhkoo7xhARym5oLS+JarRTmqK+n69KxI2XzAFTJAcAdd1AIZNs2CqEkJlKYJT6eWhCN\njVThmUy0n/79Xe/RyAsrN/bqBdx2G4UEH32UzjPrN+jQgX4efZTE12Si/QfT2mLnQHiNIyKCm2KB\n5z07qCdPBoYOpd9nz1Lrady4wPsCKIyWn08V0JNP0vliBGoZtNbybDIAOQBGAFAB2MVx3C6e5z3W\nf5k3bx4AYMcuC7gU3wIOkBNviC/7W+aKsxs4IYGc0g8/0P9C0T19Grj7bv8irteTw/Mm4nV13kVc\nr6cHEKBUwWefBc6coTAFzwM8rJBH+A6n6PUk1E88QQ9r+/Z0cw4YQAKyeDE9LIt9Zyl6hTlSo82I\ncFm44/UrUq7AgfIDKNYWo7yRUhXS06kVAXiGL7w94DYbcPvt1OfQtavz4Y6KIpdns1HHWnY2ifCe\nPU4BfP992ofQIerMOkSGRSJeFQdFVA30et9ZKQzmxG+4gUT31VdJyNPSnALpjUAiPnQoCWbfvpSC\nmZ0NjBpF5f39d7rG0dHOEaN799Lrx4/TqNLZs+n433yTWjYAxeUXLKBzlpxMcXB3OI4EbcECOoaI\nCBLx6GjnNYiMpLBJcjK9JrynDAZafm/6dOdx2mx032dkuH5XQgKZDrOZ/m6OiAtbW8GKeGUl3RfC\nz2Zn07Ny44303VdcEZyIV1XReX38cergHTkSMBi2Ydu2bQCoEvZHMCJeCiBd8H+bC68JKQFQzfO8\nEYCR47jtAHoB8Cnir7xVjx36BX6/OFWdilPRZaiuppr/8GE6MX8HzGb6nZLiuvyWUHRLS+mm53lX\np8mwWskFh4fTw7J7N7kk5qa8OfGdO51NX4BGBf773yRAnTvTPjmZBdIw/+EUgJrWkZGUKfDII9SJ\ntHw5Nbe7uTWudu2iYx461Ps+eZ5aBykpgMHiuqzf1RlX4+lfKPG4opGCq9HRzjm23Z2vtwf83Dn6\n/tJSVxGXSKhVxHKJu3Shh/XRRymW+thj5JJXriTn+vzztL8GEy0CHhcRh7CYGuh0JJpjx3o/PsDp\nxKdMofOQk0OfuflmiuX7ItCIzQ4dqOxPPumca+b118nhDx5M1+iGG+gHoGv01FN0nPPmkZivW0eV\n1v330+/Fi4GZM0m0/DF5MsXwR4ygltypU/Q3C2mlpzsrZ3ejYTTSvdOpE/3PcbSNVgvExLh+T3w8\nXTOz2dOJ79lDrULGyJGUEw4E58R5nsJgERFUXqWSjJW3CvnRR4GFC6kls26d72fTbKZ7xmymsMzo\n0XSuT5+mZy0zcxjGjh0GvZ5MgsHgO94VTEx8L4BOHMdlcBynADAVwFq3bdYAGMxxnJTjOCWAAQD8\nNgLMNjOk8L40GyM9Kh1WVTGqq+lAZ84MorR/EYxGqsX79aML/e9/U+zv3DlnXLm0lBybr3Q5rZYe\nUHbzP/kkCSjDXcRLSihUsHUrfe+SJfR6RoZTEM1mgJNawcn9d2zedx/dfJ07U2wzLY2axABlKeTl\nucbHZ80iUfQVxzx0iI7/rrsAo9XViV/b8VqkRaahSFuEOmMdLDYLoqPJfQ4aRDFVId5EnDVZ2fk4\neJDCCADFY6OjnU68Xz+6F+fNo2avzUYtot696fuACzHxMA3iIuIgj6yBVkuVmD8TwkT8i9q70OZz\nDk1mE3bu9O/egeBi4vfc4+rm09KodTVpkue28fHkjpm4PfsssGIFVbTr1wMPPUTOWZjW54uBAyku\nfs89tL9Tp0iAY2Kc12DvXqo43fttDAYSTiGRkdTf4Z7dw0SciTK7xhYLCerWrRTW+fprSllkBCPi\nR49ShTpyJI2azcuj0NPs2Z7Hy3HUFzBvHl3PkhLv52X5cuqs3baN7tN//pNez84m5z12LJV78mSn\nMfBFQBHned4G4CEAPwM4DmAFz/O5HMfdx3HcvRe2yQOwGcARALsBfMrz/Alf+wQAi90MKbxnpjDS\no9JhDCtEdTXV0E1N1DHChli3dFKnQPnMBw607iCZ5mA0kstLTaVm8O23AzfdRDcZy1BhZXMX09JS\ncszCpiILz7DjtVgo7FFWRi7TaHSum7lqFd1E7CEVPlwmEyCRWcHJ/Dvxl14iV9K1K+07LY1c39Kl\nlP8ulTqHjlssFEO85hrXSkbIqlXAnXeSW3QXcY7jsOG2Dah7pg4JygSc1593TME7fTqVQUhMDAmY\nMA2RxYnLymgQydatFHoASLRiYqgl2KULhVg++4yOhzF1KqUysvOtM1E4JU4ZB6mmBsuWkdj6iocD\nznBKnY1qzPQrjmHfvpaLeGkphWaEMfe0NBIc9woOcIoa+52TQ9sNHUoCeM89dPwpKf7LBdB1fust\nOj/x8RQ6YOGUmhpnOGfSJKcTLyyk+7SmxlPENRpX0RWWefduct0sDNbQQK23rCzKnlm6lDJntm6l\nfbMBYcIZKr2J+KpV1CKrqKCyLlhAx8NMiTsTJ5J56dLFd7riqlUkzkuX0g+r3LOz6T7q35/+zsmh\nStAfQeWJ8zy/ief5zjzPZ/I8P//Ca5/wPP+pYJu3eZ7vxvN8T57nvUTIXDHbTAFFPCM6AzpJEaqq\nnPOIjBhBvfxbt1LTpiUsW+a7w8hgoBP70EMt+46LxWh0dqIJL6LwxvAl4lOnUlNO6DJYCIX1L2i1\n5GgsFpqz49ln6cZq04Ycl3CQi1DEmRPnZf6dOHswmACxFDmGcCGDM2dIVMaOdcax3dm61TnZkcHq\n7NhkcBwHjuOQoklBua7cIeLsuIVER1NecZ8+JMwAjSC84go6p8OGUWshNtb5GYWCKhpvg3Tuuovi\n/0KE4ZSk9jXYuZMeWm9NawYTWQOvRdeErug++gCuv94z/uuOPxFnGRvuwtezJ91XSUmen3EXccYT\nTwCZmVSZXgysgmvblp7dOXPInLRtSzH6yEhqiXXpQtvOnevdiXsT8ZEjqVI+doyun1RKrdR773Ud\n4h8TQwJ59dVUIbkLsTcR37qVXPO//kXX/8QJamkGondv7/dzYyM5cGYShFx5pbP18swzgQUcaL2O\nzWZjDtKJ19qKXJy4xeK63JivmFMw1NX5no2PNfVaMucIz9ND5H4jemsmusNE3H0uh+xsEtk+fZwi\nXllJcUOOo+88fpx+und33vDuTrysjG7oqChni2PfPrpxXnmFYnQMjcbZ6jGbKSYOid2rE+d5uk7s\n+Lp0IdF0n49bo3EOYmIdfiwE4o28PDoewNOJC0lRp2DbuW3QS6oBjHUctxDZhbt+5kwKU2VlUebG\nm2+SK+J54LXXXD+jUDjL7Q4LOwlhKYaxEbFI61SDjXO9HxcArDi2AnnVeZiaPA8A0GTTYmK7sbDY\n92PR04EnGQ8Pp3tKWHkyysrIMUvc7FpiomfqKIOJrbtYDh9OPxcLm1yqTc/TSKo9ibwF47BypTMW\nr9FQZSoUUW9O3Nvc7lOm0I87M2Z4vj55MpmzgwddzcrXR79GpuRaGAxxLtvn5ZEDT01tnqmbOJFC\nmM88Q6aJnddNm2iwEjMaQtLS/Kf9eiN0CyXbzJBx/kU8JjwGdlhRXquFTkcPfWMjCRF7EIPpgfYF\n26c36uroZmlJOGXPHu8xx169AlcOTMTdGT6cerB79qSyhYVRGOJCRzaqqqjsLH/Z3YlXV9PD3qsX\nhVyYU87NpRvrmmuouSzMWfZw4hIr7FLvKYYmE10bdn369vWeWaFWOwX79GlyeCqVdxGvqiIBSEyk\n/907NoVMyp6Ep7c8jZdOjXM5biGZmfTwPvIINbPHjqX/Bwyga+aekgg40yuFIQkAOFN3xmP+FkDg\nxJVxqGlyTTz+vfB3nKw+iQPllHbwzq538NJvL8Emp5tZb9ViUPognKjyG5EEQMKzvfg/sFi8d5rm\n5lLHZnNQKkk8vTnelnDFFeS4e3yahRdPjsfEiTRnCSMyks6/sLUTrBP3RteuzmwaIVOmUGhSOHbg\nUMUhTF81HQfqfnWpRGpr6VkMJnTkzuDB1Jd0zTVUAZw5Q6+vWkUVSWsRMhG38oGdOMdxSFAmorS+\nGg0N5MINBhIi1nxsicgyd++N+npykZWVFz89JRNUITxPFzbQKFRfIn7LLdS5WVlJv7Oy6JwcOULv\n5+XRQ8hGEgpFXCql19hMeYWFzhjt2bMUSunXz3NkpTBrwGwGILXCzpm8tmLc3WBaGoWt3BEKdlUV\nNeuFwi58Tp3eAAAgAElEQVSEpe4xYfXnxGf0noGp3aeiV+xVAODViV91FbmwXr0oRvrbb/RQ9ejh\nnGTKHebEhZUbACw7vAyf7f/M5TWr3QqzzQylXIm4iDjUGFxF/LHNj2HI0iEYt3wcGkwNyK/JR0ZU\nBiosBQB4NJi16JvaFwW1/mfe4nket/94Ox7YcD8AcrHug6nWrPHebA+Ee458azB+PLD5ZzvsvB1t\nIttgzRrXSlGjoftz0iTnPRhsTNwbx49TTNmdlBTqJGf3E8/zeGTjI0hWJ6PKVOQi4mzGyYtp7ctk\nwHXXUYf2+PHU52Q20+Adb30RF0vIRNwShBMHAHVYBBqaDC6jqIQi3qMHxcgvBhZn90Z9PTm/2Fjf\nq8Vv3+4/Y6ax0TNWqdc7Fxo+edL5gL3/PsXcGL5EHCAxTkqicrEMCpZdUVBAoZCTJ6lnnDXhMjIo\nvl5V5Yypd+vmXP5Nr/f9cHjGxC2wceTE+/en+PEnn9D73pr03lCrna2gqir6bpXK+Vp9PTkpNkpS\n2LlntBo9YuKOcyOR4h9X/QM2jk68NycuZPBgcoiTJ1PIYdo0OiZ3FAq6Hu5ZEXqLHgaraxBVZ9JB\nrVCD4zgPJ87zPPJr8lGpr0RMRAz+tftfkEvkuLLNlSg15qNLDyM4jkOHmA5oMDWgweSW3C/AYDVA\nwklQ2lAKyJtgsTjDZQcOUJx47VrvrcFAdO/uPf7fUgwWA6ScFJX6Stjsru6IpVH27eu8bu4i3qED\ntaRak5KGEpysOYnHBjyGCoOriB865NkxLuRc/TmcqDrhMu2DkOnT6d56/HEKrTzxBA2Muhhn74vQ\nibg9OBFXKpSITTS4zLMsFHHg4leZCeTEo6PJSfpy+ydOeJ//maHXe4o461jU60lomfiePOnaCeIt\nli4kLY0EmgkvE+aGBhLsXr2ckz0BVFl8/bVzObDnn6dOoGuvdc5v4T7ZE0PoxE0mABIrrDCitJTS\nw5YudU4tGqyIC504azEInXhhIZ2b335zHUQDkHj5cuIATWNstNOOvDlxITIZHQPrJJ8/nzrD3FEo\nPEMpAKA362GwuIp4vbEe0eEU8IwOj0ajuRFWO80+VtFYASknxfSe0zHn6jl4/7/vIysui+ZGr83F\n1p1aRIVFQcJJ0Cm2EwpqfLvxOkMdklRJ6JLQBbvOHMGVVzrvp337qEMuMZFEo7ls2EAZFq2NwWpA\nVHgU4iLiHDn9jIEDqTPyttuc1839GZgzh+LcrUmlvhJpmjS0j2mPMn0RzGZn65tNK+wNnUmHLgu6\nYOjSofjswGdetxk+nHLKhw6lDta9e/3n/F8MIRVxKXzPm8KIkEUgLqXJZeipu4h7G2FVV+fa86zT\nOWcqE74WSMRTUz3j13v2UK1aWkrbTZhAHRfuCJ34Rx/RqEvmlBobnZ8HSNzXr3fW+v6cOEAizgZI\nJCaS2L3zjnOY/dSpFHIR1vhs9r533nF2EgLODpZgnPi0aQAvscLKmxwpek1NJB6LFlH6lTexc0fo\nxJmIC504qzhXrfLuxP2JuEqhQpNVj/j4wCIOBNdUlss9QykA0GRtQpPV9SYqbyxHioZOvISTIDo8\nGnWGOpTpypD6birilHH4avJXGJc5DhGyCAxIG4B+af3w2u+v4cfcHx0VQGZspt+QCqsseib1xNHz\nR9GlC+UfP/QQVXxqNYXfLiUMFqqA06PSUagt9HifXQtfTvzPoKqpComqRKRHpaNIW4TwcLrvnn2W\nBr/5WgLuUMUh9ErqhYXjFmJ13mqf+2fHFBNDIVBvHZotIWTZKTbeBikX+OuVciViEgzYKZgSlYn4\njBkUy/Um4uXlNGKQUVXluVBAME5cq/V0+seOkWBNnEi5o8eP05St7iuvC534xo00hJh18un1ThG3\n2+mYdDqnk9Jf9Sye3qbDwgkfeS1fWhq54shIivsNHUpx3rQ0KveDD1L52Mg0gDpBi4rofAnTMwOJ\nuEZDZauvp/OakGRBtcEImdSZ9ZCXR3HM3FzKDw+ESuWs+Lw58dJSCv+sXk1umYk4z/MBRVytUKPR\n3IiKIv8VYXPw58TNNrPLa2W6MqSonbWn1qTFlV9ciacG0oQfaRqazSo2IhYlTzhHg9za/Vbk1+Qj\nKjwKANAuuh2KtEU+y1RnrENMRAziI+JRa6jFNdfQPSiVUojoyy8vLpRysfA8jztX34lbu9+KsZne\nh6YarUZEyCKQEZ2Bs3VnMbDtQK/b+XLiwfLk5ichl8oxf9T8gNtW6iuRoEpA++j2OFV7CuGROrz3\nngY7d1IL1ldI7kD5AeSk5GB0x9G4+6e7UdFYgWR1ss/viY4mY9XaIh66jk27FVLO/9wpABAhj0B0\nglNpFQoSZIOBTm5kpHcRb2x0Dknfto2a/Ho9bTtkCN3g/px4XZ0zNa6piYbSfvUVOU2W4bFmjXPG\nMzZ72bJl1JHBysBEPDeXflg4hTlxnqdyVFc7a+zGRoC/4mN8vN/3tATp6STQMTH0OzOTysRmLeQ4\n2sbdZSYlUWUiTDkLxok3NFDIJzsbsMMKk9WEseN4DBtGoQ6plDpro6K8p3q5EygmXlpKYwKiouhv\nFp81WA1QSBWQcL5vXZVcBb1Zj/Dw1lu+XKHw7sS9xcTLdeUuIm61W3Gm7gze/ONNLJ+yHFvv3Or1\nO5RyJcp0ZYgKIxFnztAXdYY6xITHICo8ClqTFuPGUaWVlUWtxZ49PVML/0w2n96MX878gltW3oKF\nexd63Ybl+PdM7InD5w87Xl+4dyHGLR/nqBBb6sTf3f0ulhzykvvphUp9JRKViUhQJeD67Oth6vM+\ndu6kMJS/e/lgxUHkpOQgKjwK911xH4YsGYJt57b53J5NFdBcEf/8gP9lg0K3PJs9OCceIYtAx2x6\nSFQq6tgoL3eGG3xNWKPXU6eYyUSx5p9+opS6s2dplNi2bYHDKTExThFfupTyPVetIsFt29b5vSkp\n5PqNRhpkw6aOZE7cYKAYr3DaUubE2XdVV1PTrV07SkXirBRYXrDHu5Dffz/w4ktmNPX8F/7v/5wC\nyMIpjCPnj2DZYb8TSjpuLl8xcZWKjuH4cRJxq90KHjz+9aEFq1bR8W7fTnHxkyepkgwEi4lbrVRB\nxMQ4X+N553wav/xCnXQsZbFIW4S2kW397lsulUMqkcJku4gVjn3gz4k3WXyHUwCg6qkqPH7l4+A4\nDlO6TIFM4v2+V8qVKG8sdzjxgCJ+wYlHhUVBa9RCo6Hm+h9/0L3E5hzxx4f//dBv5ynj30f+7bUs\nerMe83fMx+KDi/HV4a/wUL+H8I+B/8DGU15WE4EzPTQnJQcrjq3Al4doNYevDn+Fjac2Or6jOU68\nUl+Jj/Z4tlg7xASXW1mlr0KCim7+Ee1GwBBxGnI5nUN/UwsUagvRPprcxWsjXsMzg57BtB+nYcaa\nGZixZgaWHlrqsj0T7+aK+B/F/id7D52I81a/09AylHIlMrvSQxIbSzdmVRU97OHhzoEO7rBmuU5H\n7zMHzOYAMRhIPIxG76vJ19eTC1QqnesyVlTQfqqrnZ0rcjkJW48e1JEkzP5obKSK5ORJckcNDdQC\nkMnovZIS+nxdHTn6nBwSrueeA3gzifjrO173el7UasCkKMPrO+ciLs4ZimCzFjLmbJ2DO1bf4fcc\ns/lVhE681lCLrWfJMUoktM/duy9MgnWhk04dZUJkJDn+rl2pQzUpCTheeRx51f6XR2FOvKaGbmqp\nlM6FXE4Vb0kJ9UekpZGjZOTX5CMrLsvvvgEKqZTpyrDt3Db8mPsj7LyXiyxgX9k+vL3zbcexuePX\nibt1bJY3ujrxeGU85lw9B5unbfYbBlLKlTjfeB6RYaRgvuLGAAnPmpNrXJw4QOc/JobSKANRb6zH\n45sfx76ywAuiTl81HWOXU4jkdO1pvLr9Vby6/VXcsfoOPPef5zBr7Sx8c+wbXJF6BYa1G4Y6g/dJ\ncJgTz0nJQXFDMe5ddy+OVR7D0cqjyEnJQWE9HS9z4t7CYWvy1jiu07HKY7hv3X14eKNzQpSvj34N\nAIiLiPP8sBvn6s9h46mNSFTRIASlXAnIm9CuHfU1+WvJlOuclbVcKsesnFlYNGERhqQPQaIysdVE\n3F/nNhBSEQ/eifNSA/74g1KPoqNpVjk2t7M/Jw6QcApFnA31Zq41LMy7G2fLcymVNGkPi4uzSXZy\ncihskp5O4nf11ZQRUF0tiGtfKMO5c+Tcf/yR5kN54AEa4FJeTvs5d44EQqGg71u/HoCFLIjO5Dv1\nptHciEZzI3ie9+nE45WBk2olEnIdwk7ADQUbHDMDAjQYZtkyctkWmwVyiRxGq/ex3jmf5qD7wu5e\n32Mw1332LLU+hK/X1NCoVJb+CJBwGCwGFNQUBC3iSw4uwfAvh+OG727AyhMroTPpcLbuLLRGz17o\nj/d+jKd+eQqnaj0m3gRAlYs3J95kaXJx4pX6Smws2OjixAEgThmHTrH+rbFSrkSlvhJqOX1RRlSG\nw5keqzyG/Jp8fHP0G3xz9BvcteYuRydoVJhTxIPFYrPg7Z1vw8bbvA5WckfCSXCi6gRsdhtu//F2\nnKo9BaPViB6JPbBj5g68OORFAEBOSg7iIuJQa/A+EII58SR1ElbcsAIze8/Eu7veRZvINuie2N1x\nvOxce3PiM9bMwM+nf0Z1UzWe+89zLp2KPM9j9vrZuKv3Xag3UtZAXnUebHYbbHabxwCq+Tvm42jl\nUWgUVGuQiOtd7klflOnKkKpxnU9iQtYEzOgzAzd1uwk6s+uzy8TbfQbGQAS6PiHr2LTarZAEERNX\nypUwWAwYOJgurEpF7uz0aRJAJuLffUdNc5aRwgSUOXE2tWtREX2+qsrp5BcvppS8Hj0olnjmjGvG\nxIED5DRPnKDXWQx30CC6MPHx5MY3bXK+b7E4WwPl5bQdG8qu11Pe6E030d8FBU4XfPbshQO3kBPX\nmXWw83avMWCdSQcbb4PZZoZaHebVicdHBDcy4sorXf8vqClAfk0+eJ4Hx3GYPJkqp8GDAesOK6LC\no9BobnQ0Q4VoFBqPAS7uqNU0QOm771zTB8PDKZe2WzcaeMN4YP0D6BLfBUarEb2Se3nu0A2VXIU6\nYx3UCjWuTr8at6y8BbP7zsam05swtdtUvDbSdVx9VRPV8uW6cmTHe8445S+cwl3oeOB5Hrf+cCt6\nJvVEToqXUSYBUMqV0Jq00ISRoMRGxMJsM6NKX4UeH/eARqHB6I6jIZfKHSGl0oZSjGw/0mvF5I/d\nJbvx+YHPMSl7Eg5XHEaTpYkEDIDWqHWEdAASXrlEjjhlHLYXbkdJQwl2ztrpck/2Te0LqUSKRFUi\nbHabz+svnPfmlu63oKqpCs9vfR7jMschPdIZPpJK6T52F3GLzYI6Yx3Gf00DLDQKDV4c8iJe3v4y\nDBYDynRliAyLxBNXPoGpP0yFzW7DoMWD8Pl1n6OgtgDPbHkG9hft4DgOPM9jfcF6PNL/EQxtN9Rx\nDZgT94ferIfFbnH0X7gTGRbpEaby58R5nseR8zRir2dST8c9lVuV69Hn4k5Inbiv2KCQCHmEw+ko\nla4iHhHhFPFbbqHJdBhMQJkTZxQVUbO/ooKabLW1lE0xaRLNzDZ3LmV2lJY6VyApKKAKY/lycmRn\nzzrjxzEx9HeXLs5RkrGx9HlWhooK1wunUlGFM3w4vc5WOwHIre/eDXTv7FTiRrP3CUVYTd9obvTp\nxOVSSuNs7kOeX5sPnVmHSj2tEzZjBs0fIZVSBRyvjHc4HXe8Cbv7wA6Vis7Re++5pg+WlZGws4UW\nGI3mRizctxBr89eiX2o/BEKtUKNQW4hH+j+CN0a9gTRNGpYdWQar3Yr1BZ5TJVY1VaFtZFuU6Zz5\npMIQjLdwip23Q29xxsRP151GblUuNty+wW+Wgi+YiKoVdAE5jkN6VLojJvpw/4ex8uaV+OaGb7Bo\nwiI8NuAxTO4y2SWcEiz5NfkY02kM7ux1JxbtX4Sbvr8JRqsRu0t2o9OHnWC1Wx3HX95YjmR1MjrH\ndcaWM1vQMbajh6lQSBV4cSi58TglOXH3ATB23u7ITmFkxWVBa9IiJyUH6VHpKKgtcNzvS5YACYmu\nYbDqJue0ox1jOmJWn1l4afhLaBPZBlVNVdhfvh85KTmIiYhBnaEOu0t2o9ZQi/UF67FgL/UvsQom\nvyYfEk6C98e87xJO6dyjCfMDJLWwkBnnIz9Vo9AELeJaoxYf/PcDjFk+Bld9cZXDedt5O0b/ezRu\n6eY/TzS0MfFgnfiFmkipJIFii6MKwykeI+kETlyYU15URCGQigrX8IHBQJ2WLOxSW+sUcYOBxPq2\n20iwz593ii5z4p070+guhYI6X3/7zemqmRNnMDHo0oX2KxTxHj1oDo+UJGcF5yukwm52vUXvMyau\nN9OJ8NdB5o38mnwo5UrHDRUdTfNe8DwPi92CBGUC6oze457uIRye59Hj4x4uTVm2/JRC4TnV6pQp\nrqEUgBzcA30fwMSsieiXFljEVQoVirRFiFPGoUdSD/w8/WfozDo8N/g5nKo95VEBVeor0Tu5t2Nl\noFpDLdr/qz1yq3Id5XR34gO/GIjqpmpHTLy0oRQdYzsGZU68wUScNe0Biov/Xvg7hrUb5tF6eG/M\ne5iQNQFRYVE+K1RfsL6F3sm9oVFooDVqkflhJpYdXobqpmp8f/x7SF+WotZQ6wgbZMZmYsvZLUiP\n8j99qEKqQLgs3EXE9GY9Ut9Jhc6kcxHxzFgafnlFyhXoldwLm05tQtybcag31kPRYw3kr7o+2MxU\nyCQyHJ99HO+NeQ8AkKBMQJW+CrtLdqNfaj9Eh0ej3liPdfnrMLX7VKw4tgJSTop+qf0c9/SB8gPo\nl9rPRYiVciXkyiaXGSy9IYyHeyMyLNLjuQ0LI70SasF3x79D8jvJeGvnW/h52s8YlD4I5+rP4aeT\nPyHrwyzozXp8dp33gUSMkIm4vRkxceZ0Jk6kxHu2aKxQxNkIK1b5+3Pi6enUecY6TxISaDTjoUPk\nDnv1ovfCwpyjD9mJZ/sVzlc9ciRVCFIpiWhaGsW9i4qc8xB7E/HsbIq75+Z6pvcJm1DsYZi6cqpL\nfIzdJEInrtO5io3eQiK+t2yvv9Pswena0xjZfiRyq13X9mChnThlnE/hYINVWLpYXnUecqtzcfT8\nUcc2nTrRxPnvveeazbJwIfDuu577bLI0YXa/2fjkuk+CKr9aoSYRv9C51TmuM1LUKbiu83Vey16l\nr0KvpF4o15GIv7D1BVQ3VWPNyTUAaNSe+8g9Fj9n96d7h2ZzcYh4mFPEM6IysKN4h1/hjAqPanZL\nq6C2AJmxmWgX3Q4NzzZgx8wdmJA5AZ8e+BSjO452jEBs+15bXL3kakSFRyE7Pht7SvcgIyrA3LiA\nx5wxR84fwXn9eRRqC12mTEiPSkeKOgV9Uvqgf1p/VD9djQ4xHVDSUOK4RoMWD3LE2KuaqhCvjEff\n1L4IkzkXlUlUJaL/5/3x7yP/xrWdroVKroLFbsGPeT/i4f4PY1afWbip603oGNsRgxYPwvRV03Hb\nj7d5hL2UcqVHtpE7pQ2lGLVslN9ropQrYbKZYLFZXF5/5RXntMyN5kY8sfkJbJm+BSVPlKBHUg+k\nR1Jn9tNbnkaZrgw5KTk+3T4jhBNgBZedEiGPcDidYcModusu4jU1zvg2c93uMXEGC6cATic+ejS5\nvw4dSLQzM52i6i7i1dUUq2W91hMnOkdZskUC0tKc3xkT4ynirCKIj6dty8s90/vYMTNHw/M8Np/e\n7NJTzZx4o7kRUilVOtXVriLeZGnC/Vfcj5d+C345c5vdBp1Zh2HthuFQxSGX96x2K2QSGWLCY3xm\nIAjFGwA2ntoIDpxLBRQR4VwdRXjsDzzgff5sfzMXekOj0KDeWI84JYm4VCJF8ePFSNWkergkg8UA\nk82EzvGdUd5YjsMVh7EydyU+u+4zrC9Yj9t/vB3fNMx2yfhwj/tabBaP/PDm4h5OAUjk9pTuQXqk\nb8GIDIt09J0E4kTVCQz8YiB+Pv2zR+x/4fiFqH26FtN6TMPukt24ocsNKHm8BCnqFJhtZozsMBIA\nAqZ4AhRS+fbYt3hvFzllNmPjmbozLhk6UokUJU+UOCp+AEjVpKJcV+4I2ews3uloxVXqKzGqwyj8\nMdM17a7eWA87b4dcKncIn9VuRX5NPgakDcD7Y97H/436P0crZ+WJlQCAXkmu/SuBRHx3yW4MWjwI\njw14DF9N+srndhzHOa6LkCefBHiJGZO/nYzei3pjePvhGJQ+yPF+elQ6fjnzCxrNjbiz151BhQ5D\n58TtwcXElXKlx7BmdxFnc2OzQSkACSVb3UMo4na7UyQ0Gpp2lY0wzM52Dmf3JeLz5nmfPxqg+Zkf\necRZvpwhFYgY/KmHiPfr5xxEwLb15sS33rEVA9sOhM6sQ3VTNeqN9Y4OOMAZE2chE5WKOlRdwikW\nPUZ3HI2ShhKf6XPuNJoboZKr0De1r+PhY1jsFsgkMhpK7iOcYrAYMCFrAuZuo0m0j1Uew1Vtr0J+\nbT4qGivw/u73vX7OH94WgvBH5zia+EOYZsZMA4tXFmmL8Nr21/DUL09BLpEjRZ2CMl0Znvj5Cbw8\n7GVM6TIFhysO4+ujX+OnfOdCp+/uehdn6s44/mchP/f88ObiLZzCXK8/1yeTyKCUK/1mMgHA2pNr\nMfnbyRjbaSz+mPkHuie6ZhBxHAdNmAbpUekwWA1IUacgJiIGhY8VYu3UteiR2MOlnP6ICovCc1uf\nw1s738KxymP4cA+tE3O67rRHZeweX09Rp6C8sdwlHMPMS6W+EgnKBI/PNJgaoFaoceyBYy7vze47\nG1KJFBzHQcJJ8MHYD9D0XBNKHi9B3TN1GJfp2rwKJOKfH/gct/e4Ha+PfN3R3+QLbyEVgDKhDBYD\nVty4Ap9f5zqQJyM6AytPrMS4TuPw1ui38PyQAGuzIZTD7mGFLBgnLovwyMNlzREm4izmbDY7R2lq\ntTQIx92JA85Z0LjYM5jxwnn0a0sWq0sXZzjEXcRZWtBcP5P79+9PP8uX0z7eWHIMN3y0FIYN97qI\neIcOztXrfYm40WpEelS6o5ebzaHBYoKAqxMHnHNeywX3lt6sh1qhdgxFFzqerWe3IisuC20iaUae\nX8/+ivYx7SGTyBAZFok+yX1wtPIothduR5omDR1jOwblxJssTXhl+Cu47pvrUG+sR35NPsZnjscn\n+z/BNcuuwbHKY3jsysd8n0gf+wxGPBismcycuBB2TtfkrcHzvzofkuz4bBw5fwRGqxEbbtuAMFkY\nhrcfjlpDLYq1tCoGz/N4ZfsrMFmdA4ki5BE4UH4Aa0+uxbODA6wc7AeVnGpfoROflD0J3974La7t\neK2vjwEAOsV2wsmak+if5mUKRlCM/+61d+Pda9/Frd1v9dsKZhWGMAeaCdaR+4+gc3zgmbE+GPsB\nzjeex+wNs/Hiry+ie2J39E7ujV/O/BKwMk5R0+pMdt6Oqd2nIkmVhPyafHyy7xP8kPuD13Ox5Y4t\nkHASxEQ48/dOPnTSMRiHwVoBvsrgT8TX5a/DmpNrsGvWrqCiCN46NwFqmc7uNxt9U/t6vMdacrP7\nzXa5D/wR0ph4sCmG7ifV3YkzEddogP37Sbx/+IHEsrDQU8TZsPPquLX4ZL8zxjp0KP307UszqgGe\nTjwYevWibBej1QjITLBYfOeG+nTiFnKekWGR2HJmi2NkW5Ve4MQv1PIs7l1XB0BZ7RK20Fv0UClU\nUCvULq5gZ/FOzN8xHxsLnCPrHt/8OJYfWe5Y5FcTpkGSKglDlw7FrLWzAFA4RS6RIyYixmdM3GA1\nIF4Zj8Hpg/Hz6Z+RX5OPW7vfigf7PYhpPaYB8MxWAaiCOld/zuN1nuebHU5xiLiXAR9MxFmFlh2f\njd/u+g2pmlTIpXJ0SejiiLfOHzkf80fOd+TEsxbRptObMCBtAH669Sco5UrM2ToHJ2tOBpWX7wtv\nMXFNmAY3d7vZJeXP6/Em53i0mgC6zvk1+Vi4dyGGthuKaT2nBRSgtMg0cOA8cqABoEdSDyikgWcf\n7Z7YHSM7jMT4zPFYlbcKN3W9CVlxWag11Aa8jikapxPvmdgTV7W5CsuOLMObO9/EmI5jvGZrpGpS\nPTKCsuKyArpld9j2wlg2z/P44cQPuHP1nZg/cn7AfH+Gt3AKz/M4UH4AV6R4XzF7aLuh2HT7pqDS\naBkhzU6RB5li6J4nyUZSMhGvrSWRjYykQSss73jKFBoS7r7QABtUg4g6hwACFBt/7jlK/Xv+eRIV\nFppojoh3706zFhqtRkBq8vv56Gg6Dm/hlAhZBFRyFT7e9zGMNiNu63EbKptcnbiEkzicuMkEaKbN\nROePnE5Jb9ZDJVdBo9A4ttOZdBi0eBCOVh51ZGOUNJTg8PnDOFBxwLEqDQBkxlGzhYmTixP3EU5p\nsjQhQh6BCVkTsPzocjRZmtAuuh2eHvQ0nhn8DOKV8R55xDzPI/ntZAxdOtRjfyabyTGUPlhSNal4\nYcgLLs6MwR4uVgmNaDcCQzKGgOM45KTkICfZ2dnVJaELuiV2c9yDrILcXrgdbSLbYELWBNh5O3YW\n78TcoXNd4pvNxVs4JVhyUnKwv2y/y2t7S/di8OLB6PNJH7zw6wuYmDUxqH0ppAqkaFJaFN9nTMia\n4Cgf218gJ56qSUWZrgw6sw6aMA2GZAzB2E5j8fWUrzFnyBzHPfln4W4cj1cdx/3r78fCcQsxK2dW\n0PuJDItEraHW0Vleb6zH6brT4DjvFSRALYVrO/lvdbkT2lkMg3goY8JjPJa34jiapS0+3jmSMjqa\n3PWePTRTYG4uOeKkJJp1UCaj3GyGUgnYFXU+m05GqxFJbydhw+TdAAZc1MxjRqsRdgmJuK/JpTiO\nnL/7os9syk7WofPlpC+xoWCDyxwROrMOiapER0w8NhZo11GGA4I6j4UhNGE0AIfneUe6YUVjheMG\n2xJjU+0AACAASURBVFu6F1lxWdhXts9l6HdWbBZ+Pv2zI4/WYgsuJq6UKzE+czwe2vAQRrQf4dLD\nnqBMoEmHLuwToOHPPHivaafNdeEAxXdfHv6y1/dYM7fR3IiMqAzc0PUGx3t39LzDIwQTLgt3OPGC\n2gKM6jAKW85scczNcku3W1BvrMe8YfOaVUZ3vHVsBktOSg4WH1rs+N/O2/HQxofwzKBnYLVbYbKZ\nMD4r+CV+ZvaeiZ5JPQNvGIDB6YNxd5+70TG2o6M/h4P/bIs2kW1Q3FCMcFk4IsMikaJJwWcT/afZ\ntSZMxKPCo8DzPL4//j1u6XYLbunevHl91Qo1Htv0GPQWPXbM2IFOH3ZCTkoOeiT2CJhx0hxCJuJ2\nWCGTBv76jrEdcbb+LE2YJRD97dvpd8WFeeVZuGLjRprUn6UaZmaSiMfHO7cFSMSt8jqHALrDYlmf\nHX8HwHfNHioLkIgbLfTw+5pcCqAJuYTYeTvMNjPCZeEYlznOMcyciR9DZ9YhWZ3scNg1NcAD65Jw\nQGDIhOGUSSsm4YuJX7g0h5kTbzA1oF9qPxysOIhJ307ClC7U88q+m2U+WO1WyKVyxCvjXUI7Qlgr\nIlmdjJu73YxnBj3j8n6iKtHjs4XaQlzV5iocOX/EY8Rgc+PhgWDhFK1Ri0cGPIIR7Uc43ru1x60e\n24dJw2CxWWCz21BQU4DBbQejS3wXtItuBwB48xofKw43E2/hlGDpldwLuVW5MNvMUEgV+PLQl5Bw\nErw28jW/Mz764pURrzT7M95QSBUOAR7YdiD6p/VHRrT/FMXM2EwU1BQgSZXkMBP/S4RO/MVfX8TH\n+z7GutvWNXs/vZN7Y0fRDlzb6VoMWUp5tCUNJR4dyi0ldCLO2yALMiYer4xHcUOx46EREnXhWU9I\nIKdtt7sO42Yx5/R0cqps6lilErBI6l3CKUKYiJ+qz0NMTOBlvrzBYuLCleOD/VyYLAwcx+HpQc75\nS9Ii03C2/ix0Jmpm1hnqkKxOxvO/Po9rOl6D/mn9ERtBoxQsNgvkUrlLOKXGUIP5f8zH7hJaQkjC\nSRwjFBvNjYgMi8T3N32Pbgu7OZr0fVL6uJwPFk7pFNsJp2pPOYblC2HhFABYceMKj+NLVCVixFcj\ncPC+g+idTMuNF9YXokNMB1jtVhyvOu4yz3RzM1MCERkWiVJdKeqMdUG5TY7jECYLg8lmQlFDEUa1\nH4W5w/z0cF8kKoUKnWI7IUwaFnhjN5RyJWIiYhD2ahhqn67F3G1zsfLmlRcl4H8m/737vwG3SVQl\nwmK34Fz9uZCJuN6iR01TDT7a+xGOzz7uM/zhj+eHPO+SXbL00FLMWDOjVcJUQkLasRmMEweoZv7h\nxA8Y+IXnBPKZmZT7/eyzzvTCKwR9BkzEt2wBDh92ToClVAImiX8nzoSqqNjuMSLUFx/+90P8cvoX\nACTGykgT1q8HPt3/KdbkrQlqH+5DkxmpmlRMyJqAV7e/CpvdhuNVx5EVS06ZpWCxNMJSXSl4nndx\n4gAcAp4Vl4WclByHE9eZddAoNI4cYCbig9MHY+3UtQ4RZymGcco4SCVS/Lf0vxj+5XDHEGuLzQKe\n5yGX+O5QYnnkwuyWIm0RMqIyEBsR69Gj39pOXBOmgc6kc1lGLRARsggYrUYUaYsCjli8WGQSGQoe\nLrjopjYTh+2F22G0GoPKMb4U4TgOmbGZOHz+8EX1D7QUrVGLXot6YeKKiRiaMfSiBNwb7Pr8ZUQ8\n2BRDgATnle2vYFfJLry6/VWP3Mu2bWmgi1ZLsW9hip1wtXeZzDncOzISMKDOpxPXmXRI1aQiOjwa\ntVZafSWvOg+LDy72uv2KYyuwv2w/1uavdcx1YbQaYbKaIJMB6wvWY+3JtT6Pked5PPXzU3hp20uO\nzBRvvDHqDXxx8AtsPr0ZSaokvHPtO5jddza+PPwlFu1b5IjTnqw+CYPVAJlEBplE5vEw3NT1Jmy6\nfRMq9ZWw2q1oNDc6MlIAEmuGsJedOXGArsuXh77EtnPb8P2J7wEA/9zyT9h4m18hYudcuCIOE0dv\n2UgXExP3R2RYJD4/+Dk2ndrktePTG+GycBgsBhTWF/5pIt5Sfp/xO67Lug6rT64OaqTfpQwL44XC\niRc3FKN/Wn9HamxrwVI2WzKWwBshE3EewTvxwemDHRP8vL/7fZeBFkK++cZzZXpfcyB8+SVglvju\n2GQZGllxWY6MhG3ntuGbY9+gtKEU6/LXoVhbjM2naA245UeXY9u5bcivyXfMAW20GmGymRwrnB+o\n8EwBY6zOW41NpzfhnV3vYP6O+R5LfjGS1cm4seuNmLN1DnJSciCTyJARnYFfzvyCB9Y/AKPViJyU\nHDz585OYt22eI9VOrVA7OpT23L0Hz139HOKUceia0BWv/PYK8qrzXDrUhJ2WmjCNSziFueysuCxs\nPLURbSPb4ptj38BoNeLd3V7GzLux4oYVGJA2wJHxcbjiMLae2+pTxFvbibPym2wmxIQHL+J6ix5l\nujJHXv2lRoQ8Au2i22FV7qqLmkXxUmJmn5kALq5/oKUUPVaE32f8jj1378Fdve9qtf3+NZ14EDFx\nABjTyblSaa2h1iP3khEV5SnaiRcSIHiedyydVK4rhy4sF/XGer/hFNYzzjoTC+sLUdNUg61nt+K1\n319D5486Y8xyKluRtghF2iIUa4sd2R9sQIjBasDZurM4WX3SZQ7uncU7HWL967lfMbP3TAxvPxyr\nT67GFxO/8Hk+JmRNwKGKQ7i1O3XCCW8Ko9WI2X1n48F+D+K93e9hQialeGnCNEiLTMP629ajX1o/\nhyhOyJyAl7e/jB9yf3Bx68IccOG0miw7BQAGpA1AobYQjw54FFvPbg1qcQGABuC0j2nvGMS15NAS\n9E3ti6szrvYQ8d8Lf8d3x79r1Zj4uMxxWHEDxeoD5V8zIuQRWH5kOeKV8S5zdlxqpEelQ2vS4ur0\nq0NdlBYxqsMo/OeO/7S64AVD26i2UEgVaB/Tvtl55v6IU8ZBJpH9dZy4nbdBHqQTj1fG4+PxH0Ml\nV4EHH9RyUoxBgyh3vEhbhJu+vwkAMGb5GHRd2BUWuwVGq9HrpOs6sw6Rikio5c5BMkUNRagx1KCq\nqQpHzx+FwWpA1wSaOKVIW4RdJbsQJgtziDgT7PyafCSpkzCs3TB8vPfjC8dvx6DFg/DadpqZrryx\nHKmaVMy5eg6+vfFbTOzsO6d3VIdR+Hj8x5iUTavgspsiNiIWRqsRKoUKD/R7AMunLHc6GoUGiapE\nj2HG915xr2OIOnPia6euxb/G/MuxjVDEheEU1tS8qu1VGJIxBA9ueNDvtRAinNjsQPkB3HfFfVAr\n1B4i/uimR7Fo/6JmXfOA3y2PwC3db8EHYz4I2lWHy8Lx8vaXMatP8HnCoYBdw+Hth4e4JC3HPTX1\nckfCSfDh2A+9Jmi0aL/BbMRx3BiO4/I4jsvnOO4ZL+8P5TiunuO4Axd+Ag74pxTD4Adv3N/3fscD\nF+wDTRP201JV9cZ6h6ieraM5YqPCosCDdwyO4Xne4Z6FoxYbzY0wWo0orC9EraEWlfpK6C16pGpS\noTfr0WBqQL2xHgcrDmJQ20Eo1hY75k4GaEbA9Kh0vDTsJSzavwiAc9DIV0doEh02tWX/tP4+VwBn\nhMvCcX/f+x03OHMryepkl5Xgb+52s0Pg1Qo1EpSeeY5to9rigb4PAHA2Xa/rfJ3L5EjCOSCKtEWO\n/O6M6Aw8NfAp9EjsgfevfR8ZURlYNH4R7sm5J+C1iZDRIC47b8ehikPok0xZMO4izgYF7SzeGXCf\nzeXhAQ8HPW0si8k/NeipVi9Ha3JNh2vw6IBH/S4DJxI67u97/0VPVeyLgHvjOE4C4CMAIwGUAdjL\ncdwanufdF1HczvN8cEPCQDHxYJ04I04ZB9T4X7KMUdpQimFfDkPBw5S1oTVpHaLKwjEqhcohEhab\nBZO+nYQibRGOPnDUEU4x28zQmXXI+jALxQ00f0apjlY4HtVhFFbnrXasC2i1W9E7uTfyqvNwpu4M\njDb6vlpDLdQKNfqk9EFJQwkaTA3YX7YfU7pMwS+nf3HM2XyxTcd20e2QGZsJCSdxEXEh3RK7+Ryc\nwxZx8DXIJEwaBhtvg8lqwvqC9RjbaazjPZYjrQnTYO2tvjtu3WFiXawtRlR4lKODUSjiPM+jorEC\n745+1+eyaf8rWKpeKLIlmkPH2I54f0zzJxgTuXwJxon3B1DA83whz/MWACsAXO9lu2a1e+wIbipa\nISwHOhgnXmOocVmlRWvUwmq3uszkJ+wsK9OVYUPBBkfaGxNxjYLS0dh8xrERscirzkO76Ha4Lus6\nNJobMWrZKMdcCFlxWRjdcTQ2FGxwVBp1xjoo5UrIJDL0SOyBN3a8gRlrZmBYxjD0Tu6NA+UHWjQD\nnkqhwuZpm6Ez6XyK+OD0wfjn4H96/Txz1r4EiuM4JKmScLzqODaf3oyxmWO9btcc2BTD5/XnXea8\nEIp4raEWSrkSj1/1OBaMX9Di72wJrEx/pea9yF+DYEQ8DUCx4P+SC6+5cxXHcYc4jlvPcVzXQDu1\nX4wTvzCZUYOpAadqT6HNu77jmbr/b+/eg+MqzzuOfx9Jq8tKsiQbS7YsMNgmGIiTGIhDggsmDMQ1\nAYJJEyBDEjpt3AvkQppgknRwOp2S5I80zKR0SEs7KUnjTOkEnIEQx5MsGXdC4tZOICARYxvjOzbI\n8kW+SKunf5w965Wsy0p7vMer/X1mNOyePT7n7Ivn8aPnvOd5Txymt683e+MwnN2S230uN4h3Huhk\nWl2wWMDyHy7nrWNvBUG8ppGeEz2kPU3vl3qZ0TCDrgNdfH/59/nwJR+msbqRvnQfv/jEL4AgiC+/\neDmfefYz2Z7FYTACWDRrEQ+tf4g1d6zh3vfcy8IZC3nuteeoqqia0OPWobBL4UhBfDRhmWW0mQAP\nLH6Au5+6m0RFIpIpdmGwHvr4fW4QL3SRhSiNNBVVJG5RFWf+DzjP3XvN7I+BJ4FhlyRftWoVAMc2\nbeT1+R3wwfxP0lrfSnNtM4dOHGL7we3sOryLW394K49+8NFBgQBOlUwOHj9Ia31rduWT3MfWBwXx\n/Z1cMv0SOg908qOuH9Fa38ryi5dTVVHF79/4PW31bdQl6phWN42X97+cPV9LXQtNNU00VDdQn6jn\nbdPeRntjOysuX5HtkNh9rJtkVXCub1z/DVYuXpl9gGB6/XQ27d1UcLBqrGnk8MmRM/HRhN9ltH9E\nPv7Oj3Pf2vu4fs71BV1nqK6qjt39u9l/dP9pQfzZV5/l+sev58YLb4z8Tv5EjbXai0iUUqkUqVQq\nr33zCeK7gNzUqyOzLcvdj+S8/omZPWJmU939raEHC4P4N1/vYv7CBXldZGjl4pW01bfReaAz+1DL\nk11P8sX3ffG0IB72E+k+1s2ew3t48pUnAU5r5h/qOtDFzMaZpD1NdWU16YE0111wHanXUmzcszG7\nGnZYuw2z15baFjqmdGBmvPiXL2aDc/g4OQTllFmNwS8vtVW1g54Aa6xu5PWe17OloomqqawhPZDm\n0IlD4w7iYYfC0eq9jTWNXDP7msjmH+dm4rk3XJOJJNt7tnOg9wDrtq7jzgV3RnK+Qo00FVXkTFiy\nZAlLlizJvv/qV0demSufIL4BmGdms4E9wO3AoC5BZtbm7vsyrxcBNlwAzzXe2SkQ1KM7pnTw612/\nHrSmYNpP700d3vzsPt7Nz7b8jHVb1wGw7eA2OqZ0sPPQTuoT9Wz48w2sXLeSrje7WDhjIV943xeY\nnpzOoROHaKptorGmkb6BPuY0zwHgwWse5PZLb8/OL26pa8muvnJBy6kG9Nm2m1V1dB/vzi4IO1RD\ndQO7D+/m0umXjmsshgpXZTnQe2DcQTxRmeC5Tz5HfXX9qPs9vPThvOdVjyVsMby/d/9pNXGAh657\niKl1UyPppBcFlVPkbDVmTdzd08A9wFrgJWC1u3ea2Qoz+1Rmtw+b2e/NbBPwLWDMno0TmZ0COR3o\nTvRw+czLmVo3ld6+Xtydl954KbtfmIn/asevBt3g3Na9jTktQUBOJpJc0X4F7Y3tdO7vZGbDTK5o\nv4LZzbNZ0Bb8lhCWGMI68GUzLxvU6a65tnnYGnFYBmiubQ7KKSM8cdhY08jeI3sjeTKtsTooqUxk\netnVs68ec5+Lp18cWR+J0TJxCNqRfuwdH8v+f4hb7kNaImeTvKKouz8LXDRk26M5r/8JGNf0gQHr\nJzHOTBwGtxG99vxrObf7XHr7enl689Pc9IOb8AeDRkxhTfy+tfcNWm1l28FtzG2Zyy+3/zIbMJpr\nm9nfu3/Y+mtYYhipfeZHLvnIsMtVhZl4U23ToBubwx1/wAci6RER/oNTCnOEw2X3jvcfP60mDtH3\nlyjU6ttWj3s2lUgxxNaKdqKZ+IyGGWzv2c7B4wdpqm3KZnRDF47InUt+oPdA9vW2g9uyTxqGAaOp\nJigRDF2PD07PxIcaqVF8W0MbEATpvUf2jhjEw+NPqS48iIfZfCkE8WQiyZ4je9h7ZO+glVqyQfws\nmZUSGu+CACLFEl8DrAlm4nNa5lBXVcf6HetpqmkiWZXk6Mmj7D0SrPgQtkQNyym5Kq2Sbd3bOL/5\nfAzLBozwV+UrO6487c+EgXG80+rChRemJYNpi6OVUyCabm3hzdGJ9KMutrpEHS/se4FlFy4btGZh\n+A/Q0PUSRWR4MQbxNImq8QdxM2PZhctY//p6mmubs5l42DkwnLUytEnWns/v4Ya5N7Dv6D5mNsyk\nLlGXDaz11fUkE8lhm92EmXI4u2Q8/EGnvSGoIY+ViUdRE7/q3GB9x1J4ICV8jP2ud9w1aHs4Tmdz\nkymRs0msmXh11cSqOe/teC/AoHLK5reCx+t39Ozgs89+liMnj7D6ttU8fefTQDCNLszyzkmeQzKR\nzAaMB695kJ6VPcOcKWjUf/IrJyfczSw852g1cYgmEx/a3OpsFnYlXHze4kHb2xvbOfmV4dvwisjp\n4u0nPsEbReFc5aaaU0F89+HdVFVUsXHPRh7Z8Ei2Zj6nZQ7T6oIWkGFAnZacRl3VqUzczEZtSlNI\nO8pzm4KVcsasiUcQxC+beRk7P7ez4OMUw7yp89j5uZ2D1vsMRdn+U2SyK8lMPLwRZmbZ9fD2H93P\n3Ja5vPrWq/QN9PHS/pdorG7komkX8czHngFO/Yo+rW7aoEz8TApXKBnpXMlEkgqriGwFk1lTxl/2\niUspXavI2Sq+VVQnWBOHoKPcE3/yBO+Z9R6SiST7ju4jUZmgraGNLd1bANh7ZC/zps7DzFg0axEA\n6YHgoaC6RN2gmviZNFYQNzMaqhvO+u54InJ2im+KoaUnnIkD3HbJbUDmMe2D25menE5jdWM2iL+7\n/d3ZaX6h3P4XxcrE57bMBRi2bBBqqG6IZS1BESl9JTfFcKhkIslrB1+jtb6VKTVT2PLWFhaft5h7\nF9172r65j04vm7csu6LNmVSXqGPhjIWn9XbJ9dFLPxr5ah8iUh5iy8SxNNWJwk+fTCTZdXgXC2cu\nZErNFHYd3sXfXft33PXOu07bN7eJ0Zev/nLB587XxhUjL5AM8M0PjL24sIjIcGLJxN2Bin6qJ1gT\nzxWWRFqTrdmSxEhZr5oYichkE2MQn9hj90OFQbytoY2W2qBN7EhP+13QfEFBCy+IiJxtYimnpNNA\nRT+VFl0mfve77qa9sZ0b33YjC1qH73z3veXfG7Q8m4hIqYsxiKcjWfX57a1vp/OvO7Nzx0frP10K\njaFERMYjlnJKNhOPoLWnmTH/nPmFX5SISAmKJYgPDIBFlImLiJSz2DJxj6gmLiJSzuIrp5gycRGR\nQpV8TVxEpJzFVhNXJi4iUrh4M3HVxEVEChJLEO/vd6hIq5wiIlKgWIJ4X/8AuFFh8bUzFxGZDOIJ\n4uk0uLJwEZFCxRLET/b3YwO6qSkiUqiYyinKxEVEohBLED/R34+5MnERkULFMzslncaUiYuIFCyv\nIG5mS82sy8z+YGb3j7Lfu82sz8yWj3a8vv60MnERkQiMGcTNrAL4NvAB4FLgDjM7rfdrZr+vAT8d\n65gn0/0YysRFRAqVTya+CNjs7tvdvQ9YDdwyzH73Ak8Ab4x1QGXiIiLRyCeIzwJ25LzfmdmWZWbt\nwIfc/Z8BG+uAfel+1cRFRCIQVTr8LSC3Vj5iIF+1ahUvbnmT/q09pFIplixZEtEliIhMDqlUilQq\nlde+5u6j72B2JbDK3Zdm3q8E3N2/nrPP1vAlcA5wFPiUu68Zcix3d/7jmU7+InUrvd/oyvMriYiU\nLzPD3YdNjvPJxDcA88xsNrAHuB24I3cHd5+Tc7J/B348NIDn6kunsXjWaBYRmVTGjKTunjaze4C1\nBDX0x9y908xWBB/7d4b+kbGO2Zfup0I1cRGRguWVDrv7s8BFQ7Y9OsK+fzrW8fqViYuIRCKeBljp\nfio0T1xEpGDxPXavTFxEpGDxBPEB1cRFRKIQ26IQFcrERUQKFlM5pR/TIskiIgWLqZySplKZuIhI\nwWIqp6iLoYhIFGLLxDXFUESkcLHVxCtN5RQRkULFEsTTrkxcRCQKsdXENcVQRKRw8WTiA2kqNMVQ\nRKRg8U0xVE1cRKRg8T12r0xcRKRgsZVT9LCPiEjhlImLiJSw2KYYqiYuIlK42DLxygpl4iIihYov\nE1dNXESkYMrERURKWHyzU1QTFxEpWDxBnH4qNTtFRKRg8WXiFcrERUQKFdONTWXiIiJRiG12SpUy\ncRGRgsUSxAdcs1NERKIQ4xObCuIiIoWKrSaucoqISOHyCuJmttTMuszsD2Z2/zCf32xmvzOzTWb2\nv2b2/tGON+BplVNERCIwZjpsZhXAt4HrgN3ABjN7yt27cnZb5+5rMvsvAH4EzBvpmMrERUSikU8m\nvgjY7O7b3b0PWA3ckruDu/fmvG0ADox2wDR9JCoS471WEREZIp8gPgvYkfN+Z2bbIGb2ITPrBJ4B\nPj3aAU9yiGTllPFcp4iIDCOyG5vu/qS7XwzcBDw+2r7H6aGlrimqU4uIlK18CtO7gPNy3ndktg3L\n3debWZWZTXP3N4d+vmrVKnr+p5PfbP0hqbmVLFmyZNwXLSIymaVSKVKpVF77mruPvoNZJfAKwY3N\nPcBvgDvcvTNnn7nuviXz+jLgv9x97jDHcncnuXIej1z1Ez5504V5fiURkfJlZri7DffZmJm4u6fN\n7B5gLUH55TF37zSzFcHH/h3gNjP7OHASOAp8dLRj9lX2ML1R5RQRkUKNmYlHejIzHxgYoHJVDc/f\nfJhFl9cU7dwiIqVqtEy86E9sHus/Bl5ByxQFcBGRQhU9iPcc78FONJNMFvvMIiKTT/GD+IkeON6k\nIC4iEoFYMnFXEBcRiUTRg/h9P/08fqyZ6upin1lEZPIpehD/q4WfJ/ncw9iw91lFRGQ8it5K8Lr2\nW2k4XuyziohMTkXPxHt7UT1cRCQiCuIiIiUsliBeX1/ss4qITE7KxEVESljRg/jSpdDaWuyziohM\nTkWfnfLmm1BbW+yziohMTkXvYljM84mITAZnVRdDERGJjoK4iEgJUxAXESlhCuIiIiVMQVxEpIQp\niIuIlDAFcRGREqYgLiJSwhTERURKmIK4iEgJUxAXESlhCuIiIiVMQVxEpIQpiIuIlLC8griZLTWz\nLjP7g5ndP8znd5rZ7zI/681sQfSXKiIiQ40ZxM2sAvg28AHgUuAOM5s/ZLetwNXu/k7g74F/ifpC\nJ5tUKhX3JZw1NBanaCwG03iMLZ9MfBGw2d23u3sfsBq4JXcHd3/e3Xsyb58HZkV7mZOP/nKeorE4\nRWMxmMZjbPkE8VnAjpz3Oxk9SP8Z8JNCLkpERPIT6RqbZnYtcDewOMrjiojI8MZcY9PMrgRWufvS\nzPuVgLv714fs9w7gv4Gl7r5lhGNpgU0RkQkYaY3NfDLxDcA8M5sN7AFuB+7I3cHMziMI4HeNFMBH\nuwgREZmYMYO4u6fN7B5gLUEN/TF37zSzFcHH/h3gb4GpwCNmZkCfuy86kxcuIiJ5lFNEROTsVbQn\nNsd6YGiyMbPHzGyfmb2Qs63FzNaa2Stm9lMza8r57AEz22xmnWZ2QzxXfWaYWYeZ/dzMXjKzF83s\n05ntZTceZlZjZr82s02Z8fiHzPayGwsInkMxs41mtibzvizHoSDufsZ/CP6xeBWYDSSA3wLzi3Hu\nuH4IZui8C3ghZ9vXgS9mXt8PfC3z+hJgE0F56/zMWFnc3yHCsZgBvCvzugF4BZhfxuORzPy3kuC5\niqvKeCw+B3wPWJN5X5bjUMhPsTLxMR8YmmzcfT3QPWTzLcB3M6+/C3wo8/pmYLW797v7a8BmgjGb\nFNx9r7v/NvP6CNAJdFC+49GbeVlDkOB0U4ZjYWYdwDLgX3M2l904FKpYQXy8DwxNVq3uvg+CwAa0\nZrYPHZ9dTNLxMbPzCX5DeR5oK8fxyJQQNgF7gZS7v0x5jsU/Al8Acm/MleM4FERdDONVVneVzawB\neAL4TCYjH/r9y2I83H3A3RcS/DbyR2a2hDIbCzO7EdiX+Q1ttKnHk3ocolCsIL4LOC/nfUdmW7nZ\nZ2ZtAGY2A3gjs30XcG7OfpNufMysiiCAP+7uT2U2l+14ALj7IeAZ4ArKbyyuAm42s63AD4D3m9nj\nwN4yG4eCFSuIZx8YMrNqggeG1hTp3HEyBmcZa4BPZl5/AngqZ/vtZlZtZhcA84DfFOsii+TfgJfd\n/eGcbWU3HmZ2TjjjwszqgOsJbtiV1Vi4+5fc/Tx3n0MQD37u7ncBP6aMxiESxbqDCiwlmJWwGVgZ\n9x3dInzf/wR2AyeA1wl6yrQA6zLjsBZoztn/AYI77p3ADXFff8RjcRWQJpiVtAnYmPn7MLXcxgNY\nkPn+m4DfAX+T2V52Y5Hz/a7h1OyUsh2Hif7oYR8RkRKmG5siIiVMQVxEpIQpiIuIlDAFcRGRwdxk\nZwAAAB5JREFUEqYgLiJSwhTERURKmIK4iEgJUxAXESlh/w+FKeZ+iKIc4QAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7fc258328890>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsXXd4VNX2XTdlaiYzkx5CEkoSCL33EilSBUGxAQrWp/Ce\nvTyeiiggvmdXBJ9dFHmKitIREASk95KQUJKQEFImk2RqZjJzf39szp2aZBKiCf7u+r58k5nbzr33\nnHXW2XuffTie5yFChAgRIq5PBDV3AUSIECFCROMhkrgIESJEXMcQSVyECBEirmOIJC5ChAgR1zFE\nEhchQoSI6xgiiYsQIULEdYyASJzjuLEcx2VxHJfNcdyzfrZHchy3keO4YxzHneQ4blaTl1SECBEi\nRPiAqy9OnOO4IADZAEYCuAzgIIA7eJ7PcttnPgAZz/P/5DguCsBZALE8z9f8YSUXIUKECBEBKfF+\nAHJ4ns/jed4OYBWAyV77XAGguvq/CoBOJHARIkSI+OMREsA+CQAuuX0vABG7Oz4CsI3juMsAwgDc\n3jTFEyFChAgRdaGpHJv/BHCc5/lWAHoCWMpxXFgTnVuECBEiRNSCQJR4IYAkt++tr/7mjsEAFgEA\nz/PnOY67CKAjgEPuO3EcJyZqESFChIhGgOd5zt/vgSjxgwBSOI5L5jhOAuAOAD977ZMJYBQAcBwX\nCyANwIVaCiL+8Tzmz5/f7GVoKX/isxCfhfg86v6rC/UqcZ7nHRzHzQWwBUT6n/A8n8lx3EO0mf8v\ngFcBfMZx3HEAHIBneJ4vr+/cIkSIECHi2hCIOQU8z28C0MHrtw/d/i8DcFPTFk2ECBEiRNQHccZm\nMyEjI6O5i9BiID4LF8Rn4QnxedSPeif7NOnFOI7/M68nQoQIEX8FcBwH/hocmyJEiBDRYtGmTRtw\nHPeX+GvTpk2D719U4iJEiLiucVWlNncxmgS13YuoxEWIECHiLwqRxEWIECHiOoZI4iJEiBBxHUMk\ncREiRIi4jiGSuAgRIkT8gdDr9ZgyZQrCwsLQtm1bfPPNN016/oBmbIoQIUKEiMbhkUcegUwmQ2lp\nKY4cOYIJEyagR48eSE9Pb5Lzt6gQwz59gGHDgDff/NOKJEKEiOscLTnE0Gw2Q6vV4syZM2jfvj0A\n4J577kFCQgIWL17ss39jQgxblBI/fBhwOJq7FCJEiBDRNMjOzkZoaKhA4ADQvXt37Ny5s8mu0aJI\nHADk8uYugQgRIv5q4Pxq2IahMWLfaDQiPDzc47fw8HAYDIZrL9BViCQuQoSIvzyay9oSFhaGqqoq\nj98qKyuhUqlqOaLhaHHRKSKJixAh4q+CtLQ01NTU4Pz588Jvx48fR+fOnZvsGi2OxGWy5i6BCBEi\nRDQNFAoFpk6dihdffBFmsxm7d+/G2rVrMXPmzCa7RosjcaMR+Pjj5i6FCBEiRDQNli5dCrPZjJiY\nGMyYMQPLly9vsvBCoAWFGFZXkwpv3RqIjQUOHfK7mwgRIkR4oCWHGDYU13WIYWUlfer1gELRvGUR\nIUKEiOsFLcacUlFBnyYT4OXMFSFChAgRtaDFkTgANGEIpQgRIkT8pdFiSPzYMSAmhv43mcSZmyJE\niBARCJqdxGtqgEuXgB9/BG67zfW70dh8ZRIhQoSI6wXNTuI7dwL33APs2weMG+f6XbSLixAhQkT9\naHYSr6qiiJSqKiAuzvW7aBcXIUKEiPrR7CRuNgPFxYBUCoSFuX4XlbgIESJE1I8WQ+IqFRE5g6jE\nRYgQIaJ+tAgSdzp9SVxU4iJEiPgrYOnSpejbty9kMhnuvffeJj9/QCTOcdxYjuOyOI7L5jjuWT/b\nn+I47ijHcUc4jjvJcVwNx3GaQM5tNtNneLgr+ZVGIypxESJE/DWQkJCAF154Affdd98fcv56p91z\nHBcE4H0AIwFcBnCQ47ifeJ7PYvvwPP86gNev7j8RwGM8z1f4O583GIm7K/HYWFGJixAh4q+Bm2++\nGQBw8OBBFBYWNvn5A1Hi/QDk8Dyfx/O8HcAqAJPr2P9OAAEv5+yuxBmJR0YCVmugZxAhQoSI/78I\nJAFWAoBLbt8LQMTuA47j5ADGApgTaAHclXhQEBAaCkREUFZDESJEiGgKcAuufX02fn7LzJTY1FkM\nbwKwO1BTCkBT7AFS4gCpca1WJHERIkQ0HVoqATcFAiHxQgBJbt9bX/3NH+5APaaUl156Sfg/IyMD\nZnMGAFLiAC3PFhEhmlNEiBDx/xc7duzAjh07Ato3EBI/CCCF47hkAEUgor7TeyeO49QAhgOYXtfJ\n3EkcAP79b4pKYUp8wwbg99+BnJwASiZChAgRLRwOhwN2ux0OhwM1NTWorq5GSEgIgoODaz0mIyMD\nGRkZwvcFCxbUum+9jk2e5x0A5gLYAuA0gFU8z2dyHPcQx3EPuu16M4DNPM9b6junO8xmmm4vDTPj\nQOEB9OlDJhXRnCJChIi/AhYuXAiFQoHXXnsNX3/9NRQKBRYtWtRk52/25dn69QNmzwZK2y7F/P1z\nwc/n8cUXwLZtwJdf/mlFEyFCxHWK/+/Ls7WIGZtDhwIJMTTTx2gzikpchAgRIgJEiyBxhQLQW/UA\ngGNXjokkLkKECBEBosWQeImpBADw3NbnMOO0WoxOESFChIgA0OwkbjQCSiWR+KQOk7Dn0h6YHVWi\nEhchQoSIANCsJG63Uzx4WBhQai7FXV3uEraJJC5ChAgR9aNZSbyykjIWchwp8bbatjj/j/MI5kJg\nsf41vM0iRIgQ8UeiqafdNwgVFUTiAFBqKkW0IhpttW0hC5bD4qwCoG7O4okQIeI6QHJyMjju2nOj\ntAQkJyc3+JhmJXG93kXiOosOkYpIAIBWGgkLdBBJXIQIEfUhNze3uYvQrGhWc0pFBaDW8KiwVsBs\nNyNMQotsamWMxEWIECFCRF1odhKvabULo1eMhkqiQhBHxYlURKI6WCRxESJEiKgPzU7iknA9ssqy\noJa5TCeRigiRxEWIECEiADQ7ictUFhhtRqilLhKPVkaiOkiH6XXmQxRxPeOll4ArV5q7FCJEXP9o\ndhIPVdDSPu5KPEKhAaSVWLmyuUom4o/G6tVAVlb9+4kQIaJuNDuJh8gpc627EtfI1ICssrmKJeJP\ngMVC0UkiRPzR0OuBJUuauxR14/Jl4P33G3dss5K4TgeEyH2VuFqmBqQiif+VYbFQJy5CxB+NpUuB\nf/6zuUtRNxYtAv7+98Yd26wkXlYGhPpR4mqpqMT/6hBJXMSfhY0br/0ceXnAggVN78cxGIDFi4F1\n6+i7dypxsxl47bW6z9HsJB4kvarEpZ5KvHPvSsjlzVUyEX80RBIX8WfhwoVrP8fq1eSM37Pn2s/l\njq++An7+GXj00aspub1MjD/8AKxaVfc5mpXES0uBIMlVJS5zt4lroNBWwG537Wu3A4cO/dklvD5w\n7Nifv7D0vn2+qsEd+/cDDof/bU4nJTgTSTxwHD5Mz3vtWuCzz0gAiQgMNtu1nyMzkz4bm5jPZKKV\nysrLXb/l5gKffgo8/TTwxBNAmzZAodsS9IWFwIcfAv/4R93nbjYS53mqiM4QM9pq2qJDZAdhm1qq\nRpWtEk4nUFNDvx04ANx3XzMVtoVjzpymVwj1YeDAuq95yy3UufgD63BEEg8MFy8CffoQkU+bRk66\nH39s7lJdP2DEey0ruGVlAW3bNp7Et20D7rkHWLjQ9dsjjwDt2wPjxtH3hARycDI88QQQEUFtqS40\nW+4UoxEIDQXsvAULMhZgSvoUYZtapkZlNZlTzp4FOncmwjcam6u0LRtVVfUrcauVskbGxl779Vhj\nOH0a6N0bPmavmhqgqIgqZO/e/ssCuIaOBgOppchI330LC6nMIc2a5ad5sWYNEBRE5J2WBowaRe9c\nRP1wOsl0FxREo3mJJPBjCwuBmBjiqawsYNiwxo94CwqAAQPIPHLTTVSW3bvpd4WC9klIAH79lcro\ndAKbNxP/hYfXfe5mU+JlZUBUFGCpsUAe6skCaqkalVYi8S5dgA0byPRiMjVTYVs4DIb6K9eDDwJx\ncU1zPdaZPvII8MILvtuLi6kSug8N3WEhC5qgxJctA+bN87/vtGmkYv4/Y98+YNYsIoCOHQGVit65\niPphMpHIUCgaTsBjxwKbNhH3OJ1AYmLjlXhhISnuUaOAl18GXn0VePJJT4IeN47MkC+/TIr9oYcC\nE13Npm8YiZvtZihCFR7bFKEK2J12yBR2AKH47jugXbvrV4lbLC61arNR/nSepx6XLU/XENhspCwc\nDkAq9VXiFgsgk9F1GA4cuPb7YGDk63TSsH7+fCoHUzmMvGsjcd3VjArnz5Miyc8Hzpzx3Y/n6ffi\nYvp+5QpV+vqeV2OeaUuG0QjcdRcp8vR0ega1PduWCquV6kdQE8jGhrxfg4E6Pbu9YQSckwOcOgVc\nukSZVjt2pDZV1zmsVhqB+kNhIS0I/+KLtR9/223011A0mxLX6wGtFrDYLZCHeCpxjuMQLg2HVE1h\nhps2URylyUTEcb2hSxcXEY0aRZW5Vy+ycQ4b1vDz9e9PncLQoUR03kpcoSDnlzuaMjSqooLMG7Nn\nAykpNExMSQGOH6ftdZH49u1A9+5AfDyR06OP0n7MceSO4mIyAZWV0Wd8PNn/60J5OS3391dao9Vo\nBNRquvdhw65PJX7PPa4wumtFt25EroGgqoo6vfoI2Btr1lAdZ3UzPZ2ESl316q67gMGDgREjPP96\n9wa++ILMJX8Emo3Ea2roIflT4gAQpYhCiLoUMTEUJ8leABuKX08oKXH10MyWefo0sHJlw8OfsrLI\nYVhTQ8M8q5X+Z5WL2au9Q5UqK/2rIJ4P3OHjfu4BA8izvmkTEcqlS8D339P2wkIgOdk/ia9ZQ58J\nCUT6q1eTEtfpPCMueN5F7GVlrkbLOsPa7oMRhU7nu+16hdFISxi+/DIwciSRUkNs4uz+3f/+LLDr\nnT9fu5BoaB3Mz6fIjkDAlHh9BOx9jR9/BKZOpTqclUVKXCqtvSOoqgK2bqV9L170/GMhgn85Enc6\ngeBg/zZxAIgPi0dQeJEwlGFgJhWOA37//U8qrBt4nhytLGomkP3NZhdBdelCnzfdROFDer1nxzRz\nJnDrrbWfb8sW4MYb6f/0dJciY0O5bt3ou7uzkVU8tgAHg8NBxD5jhufvPXpQTKw7OI6Gep9+6rki\nE8eRIp82jcqWlUUzz8aPpyGpd+Pcu5c+a+SXkZzMIyEBOHIESEoCjh6lbZ9+SuUaMYKcnaWl1JjC\nw2sPrZs9m46ZPZu+s/2cTvIF1PVMAwHPk6IKVAE2JUwmGl0wBKrEp04F7r+fhvBSKdlYg4Lo7623\n/rjyAi6z4ZQp9A7z8vynWeB5GmEFBQHffFP/eauqyDQSqDnJYACkUYWQSPmAlfjkyeSUnzGDrnPs\nGLX5utT8xo3AkCH+nZAZGfSZlBTY9RuKZiNxRiC1KfF4VTygIhLv4Io+9HBuBvLSmxoWC9lpAx0R\n2GxEJKWl9N1qBb77jpwa7F7cK+TPP7sUrT+UltKQ7bffqEIzRWa1kso9dYq+V7pNeK2sJCVnMHiS\nakkJkf3atZ7K7vhxKqP7PQOkmj//3JPEAZrJtngxEWdODhH40qXU0XnbutlzODYyAf87/T/cfLOr\nI1i7lrZ9/jkpap4H/vtfOm9hIZlh2PHeOHiQyu1wEPmz/fLzqRxbt3qq84bi+HHqbGobCfyRYEqc\nIVAlvns38MknZFqLjQW+/poU5u7dvua2pgarfxs3klgrK/MfUmoyUb389lsyOdQH1jkHSuJVVcDv\nA1vD2u7bgJR4cTG1LRZSeOoUzU8ZPrxuJf7jj9Rh+YNEQnVZ/QctVNasJB4c7N8mDpAS55VE4mo1\nPVCNhhor89i6K/GcnKaLvgCo4U+Y4Ksk3ZVvIGBEzSqfyUQ26yFDSIHEx3tWSPcXfe+9FIIEUCX/\n739dBKrREEGNHEnbV6+maJERI+h7RQUpH5mMyhwdffV5u3U+hYU0yhk5ksrj7jjW6Wj4vmmTq3y9\negEnTgDZ2b6qXqOh6xUW0rCR44Dbb6fK7x7n6t6QC6oKcMstZHq57TbqhIqL6RrsvqKiPEmcPUej\nkWKn//UvelcXLgCpqa5jLl8GRo8mFdWrF53vWmyyLC7bXUTcfjuV/cMP/R+j19PzfeONxl+XXTMQ\nJf7661Se5GQqb+fO9HtkJBGM2UzlGTCASDYpiUZz7qaJK1fovgAyAzz3HI0e2XnffNO179q1rt+9\np4az8k2YAPTrR//7I3EW4DBuHLXnZ5+l8/3tb0DfvhRVBQDvvUfROez9z5tH+/lLV3333WTGcC9H\njSbbh4BLSmjkyt6P2UzPY9IkajeJifQ8xo2j5+9tkrFYyD+VnEwRdJMm+Zblz0Czm1NMdpN/JR4W\njxrFZYEsTp+mCnjwID18gIZoDDt2NK1K0unoxXiTdUNJ3ExZBYTKxzzrwcHAuXPknHQncXdy/OUX\nVwPbu5ciTCoqyCGs0dDQPj+fth8/TqaYLVuAd94hAtm0iZRDeTk1fI3GsyExwv3mG2pImze7tpWW\nAh98QM+7sJBIfu9eYMwYYMUKKoM71GoihoICoFUr+m3JEgoP3L6dvjudnuRjspnQpQup9fR0ajgv\nvUTXkMloH3cST0+nkY3VSmW9eJHu98IFuiYzIUVFUae2dSsRTXo6cPPNLnt8Y7BmDZEh6+hyc+m+\n3nuv9uxzJ0/Sc3z33WuzQweqxA8epNl/t91G/zM77Z499AxCQmhySXAwlW3XLiL0//3PdY4jR4gs\n7XZ6d6+9Rp3Bb7/Ru9m61bXvsmWUWOrxx+l87qiqIoJctYquDdRN4mFh1OH/+980SvjiC1LA7Hq/\n/UYx1Kwd2WxUnh07PM93/jzVz2+/dZUDAHh5qQ+J//gj1Vd2DZ2O7vvjj+m7Wk0k/uWX9N3bnLJ1\nK8WQ//Yb1cWmmIPRGDSrEkewDWa72WPKPUO8Kh52aZFAanI59YYsbC4tzTMqI9Dh1auvBuYUYZXF\n247nbr7wh08/pQgUpnhrI3GAPhMS/CvxO++kYxjpFRa6hqQajS+J8ryrgcbG0n5MeV66RA3fncT3\n7QPuuIOuL5ORTfvnn2mbUkmEW1xM12VkL5GQnTU/n2aSuSM0lM5z9qzLgRMcTA3ZYqH7rqykzoTB\nbKeHI5fTe506FVi+nD4ZoqOpIeXl0XmVSlLWP/9MJqmsLJfjiSEqCli/ns7588+0beJEIiX3Kdhz\n5xIRZWR4/t10E416MjKIFHNzqQzDh5MqLi4mopw8mc5bWupSfgzbthHJTJ5Mz+bYMap758/DB//+\nN5HWgAGeZOh00ixlFo7KUJsSLyuje01Pd9WXlBQiyE6dqM2EhtK+4eGkIO+8kzqoRx+l6d2ZmTSy\nOXeOnmtQEO2TnEwdOXM2V1WRWeauu0ixsnrOYDDQNSQSurZC4ap7J09Sx8bKHBVF/0+dCnTtSqPJ\n0aOpPMwsxqJESktddW/6dBJ0zD81dy69u86daVSSkeEaOThkpR6TzCZNovfzzDOuezIagdatPZ91\nbCwpcMDXnLJ2LflakpP9T1T7sxAQiXMcN5bjuCyO47I5jnu2ln0yOI47ynHcKY7jfq3vnE4nYJeU\nIkoRJayt6Y74sHjYJEUeZBUW5rJrxsSQKYJNU2WKtL4QxO+/J5VSH1jl8VYP9SnxLVuoAbOKUReJ\nA1RJ3O28TIGuWkXXYJ1GYSHtp9cTGSuVRJLuYE4VRtZnz9L3/Hxq+Fqt637Wr6fzMxNUp06uzo1V\nyG7dPEkcIPLaswc4mDALhmpPJtFoaMTk7oXnOFLJhYW+tnST3XP21oIFdG73WNmoKCLy7duBQYPo\n/jMzSTEOH07PYe9eyjvhfozTSWacsjIihYgIapzseRoMZLefO5fC3156yfVnswEPP0ymgE8+IYdr\n3770fI1G8hfExwNvv00k17UrmZjcsXYtKcf0dDJl/Pgj8NFHvnWvupomdrz+Ok302LfPta2ggESB\no/NXOH7luPC7SuVfiTNCZNO3S0tdBDl0KI3MvJGRQfXk3XdJgbKFOljnePQodUQAmTSvXKE67O7I\nUyh8SbyqytVhT59OiZ5Y3du6lfwegGcZ77nHNbHriy+A//zHNXpjUSJlZWQuyc+n9xkZSZ2qw0HP\n6u236TmuX0/v8pNP6Hw1khKBgH/6ier+Dz8ATz1Fx5vNvmYrb3ibU86edQUSNCfqJXGO44IAvA9g\nDIDOAO7kOK6j1z5qAEsBTOR5vguAafWd1+EA7KGliFZE+90eIY+APVjv0eiVShfhscpaWEjDQlZB\nS0ooprw2VFUFptoZ6bKKt3o12d1Z41m1yv/KNFVV1Nl4kzgrtzeJM3MBgz9FA1CjdFfiHOdrl2aN\nhpE4m7Ken+9S4vPnkxORdX5sxBAV5Soj6wzmziXSeeMNFzFzHJHpyjNf4OiVox7X12rpvr1Dqdh7\nYmVPTLx6r3bPm5VK6dzuk5RYhMPAgUTmDGfO0HnT04kUmAmH3UvnzqTKOnZ0qXSZzNUIWQcXH0/k\n4a7E776bSP/xx2mfXbvoHGFh1NB/+omeITNxeI+mANf779iRyr9qFXWS3vtt307v+MwZun/37ULs\nfMc1+OToJx7PyW73tcW7kziLDGJ1LSjI9dzdIZGQI/rWW+mcmZnka1i0iL537ep6H8wcs2CBpyNP\nqaxdibPydujgGtVmZlLbefNN6hQYiQcFud6xVktlS0igkWRREQm4L78kAcfuhT37vDw6z403Unn6\n9aN3OXw42bFskmJUV1MnuXgxveOBA+meUlKoPnibrbzhbU5xFzfNiUCUeD8AOTzP5/E8bwewCsBk\nr33uAvA9z/OFAMDzfL051hwOwBZaghhljN/t4dJwyDUGIWQMoAfM7OHuJP7DD1TZoqPJbvz887XP\nnDIYPJPM1AZvEl++nMwTjFQ//hjYudP3OBZDzQjebKZKxWyp7DuDN4kbjdQ4W7em71VV1Bi9SRyg\nz4ULXauWsEaj1RIhs+H1pUtE8IsWkSrKzaVOadYsV7J893LY7aRgJkwglTJggG8YIgBUVXvKQXb9\ndu089/Mm8f37rz4LLxKvDfPmkcoCyPbfpw8ptFat6P4OH/ZsTBMnEmlOmeJp73Un8cxMGr5v3uwb\nP3/bbUSuISF0fjZTkr3Hs2eBnj19788dWVl07dGj6fmx9+i935o19LycTiIe9+2CSAixYl32OvBX\nDescR6p+6VLXviyhHGsXjNTcO8Ta8PrrpMQVCnIqv/UWdeDff+97/Mcfk8167VqXI8+fEmfx2Qzu\no8DMTBIPTz5JHSIjcX9g8wnCw2nfJ56gTtd9u3sstzdsDrKf1YRUwGol81pSkst5C1BHXlISmBJ3\nT6bVlCS+r2Af7A57/Tv6QSAkngDAPTq24Opv7kgDEMFx3K8cxx3kOG5mfSd1OgFbaGmdJG52VHk4\nC5RKTxJnw/TCQlJGkZGuCQWrV/sP1WNDs/rgTeKsojAS1+n8O2oqKqiHz8wk50pVFak6Rh71KXGT\niYb/ycmu8paV0TFVVfS/O4n36OGKQnBX4rm51KlFRbls4j17EnEPHUrnGj7cda6ICHKAOp1U1hEj\nXI6auXNJ/TDUOMkIWW5xy6sJ1yjFvfECviQeH3/1WQRI4mq1q2Po1o1su9HRpNQ6dqQG5d6YVCqK\nqFCpPIe7jMT/9z8y+3Tv7np27ggNJVEAEHlfvOipxN3tuO73B5DNe/58qqe33ELXDAoikwSbAbhl\ny1UziYOI6eGH6VhG4jxPtnohj3RwNS5WXERWmWvod+edpLbLyqgjX7iQriOTud5poFPc4+LonURF\nUX3r14/qCYsQcseAAXQvPXu66kdt5hT3mGkWvcTz1I46daLf9uzxHGF5IyGBBFRCAqnsWbM8R10J\nCfQsP/jA5UB1h6WGhpr2IAOqq+n5Tp/u8g0ALh9DfUqcmVN+/ZXat0RS9/6Bgud5DPxkIF7b47v6\ng5N3YmeuH7XohqbKnRICoBeAEQCUAPZyHLeX5/lz3ju+dHUWyZEjQKmkFD1rMaeES8P9Kr0rVyh6\nYeZMsnu522zDw1228eXLSUW6h7c5HNQIAyFxb5s4I/GUFNe5aiPxbt1oiH/77eQwjIyk67KJP+4T\ncfwpcaXSRUrMgcSm6bOYbwB45RWKGWd5UVijYQRjs1FD+f13SubDwM7t3nhCQ6kyV1RQRZXJyOa+\nahVwww2e92iykS27yOA53KltRl58PI2MoqOpPA4nJRo32Bo3dzwhwXUPrOEGoohkMlKAd9xB7yCQ\ndK5z5pAJoXdves55eZ5mCnZttnrMSy/RNT74wNNn8fTTdJ41a2gobzQSKURHU2cKEHn+8gs5QRcu\npPA6nQ7ICbGic3RnrMtehyR1EpQSJZRK6liff546pD17XBEwHEcjKW/nd32IjiYyqy/T3/PPe9bZ\nQJS4TEbPaeVK2n/ZMqqv69aROac2zJlDo6UePfxvf+ABl0PeX8pWi92CSHkkys16WK08Cgs5n7rC\non14vm4lzswpzMdyrSrcYrfgsuEyHDy1hy+Pf4nnhz0PANixYwe2/7odey/txcHLdTvxAiHxQgDu\nc41aX/3NHQUAynietwKwchz3G4DuAGol8Q8/BJbnzENMLU9NGkIu4eqaauF/jYYIpn9/6smPHaMw\nJEbiKhWReJs2ZGPkOFc8utNJDQRwkTgzTzBidkdZGdnd9HpXL52Z6WpwADmeTp6kayYmEnlXVND1\nWSX/6SdSvjodkWpIiGdaVXdbNEBkHxbmihoxGKjhT5nicnqxIS7LQ8ycoazRBAVRJdPp6JkVFXmq\nIlb5vIex0dFUbpZAC/AcdgplvOqQvGzwtEvVNpsyKoqeEwuPZENcvaVxKyW7kzgbQgdK4uxZSyS+\nnZM/9OpFfwC9l9xcXzNFQgIR6eefk7A4edK3PCkpZL559lkaJUycCDz2GKlwtm/fvnT+114jpT1/\nPtXxnJBqTEybiO252/HM1mdQ+EQhWqlaIT2dzCrr1xMpMjIDaI5BQxEVFVh+ERYbzqBQ+GYYrapy\nmQQBel6KdtyTAAAgAElEQVQ330z3PH26K2dQbeTMMHAg/dUG9/fjD5YaC1RSFSrMRhisFhQWKnze\nDVPiHFe/EmfPp7ycRnLXgme3PouvT36N6ppq9E/oj1Mlp1BVXYVwaTgyMjKwtnotsjOzsXvJbnSN\n7VrreQIh8YMAUjiOSwZQBOAOAHd67fMTgPc4jgsGIAXQH8CbqANOJ2AMyUO8ys+Y7SqYGo8OIcnI\nhonu+XcLCoikWrVyKfGBA6kx8DyRcFQUKZVx42hozoasq1aRumJxoO4oLqZhO3MQtm9P52bmHMA1\nLD96lLafOkX3FR/vimG32VzmFDbRxx1aLVUgu53Ine1z662uFeEPHCC7sNPpOROTgRGuO1Fv2UJm\nlNOn6bu7KqqNxNmogCnx2sDMIEVGTyW+caN/FcfOW1pKo5JqB7WEMnPjlqcZM8ZFIq1bk0+gvpzL\nAN1TQQGVcenShuWWBkil5eX5Dv/T0ymsdMcOIunaOpTkZFfUS9u2RBosRfBrr9H2WbOoPrBEX4sX\nAwd/JCX+38P/BQBszNmI+3rdhwcfJDEzYgR1Zjfd1LD78UZdtum6EIgSB8gsZzDQ558FNplQAhUM\n1Ua/JM6UeHBw/Y5Nq5Xud8YM13T6xuK8/jw+nfQpHlr3ENKj0xHEBeHYlWMYljwMPM/jh6wfsP6u\n9egS06XO89RL4jzPOziOmwtgC8iG/gnP85kcxz1Em/n/8jyfxXHcZgAnADgA/JfneT/JRV2w1zhR\nKP0FI9rWHkoSLg2HwWZAtJJaDRseupP48eNUWWQy+jx+nJQvIw5mv2RDZxaWWFHhsjH7Q2Eh2eB2\n7SLFlpDgSvQUFHQ1RNJOBJ6eTpV41SpXDLfNRjbD4mLqOKxWUvLeJM5UM5uQw8wYgwbRb2++SZ1U\n+/a1L9PkrcQBGv737u0adQSixKOiqLw2mys21h+YOaWgqsDjd3eTjfd52YSdjAxS4hHyCJSZy6iR\n+cmdUxfcI06Cgog4A4FMRu+vWzf/M/3qA1Pi3o1XqaS48voQGkpmFoaPPnL9/8wz9PnOO57HpKcD\nym3VSItMg95KI5dVp1fhvl73YepUV0x9mzaUJ+VaEBXV8I4NINOUxULCiI1QvG3iAPk13O/5z4C1\nxgp5qBwyToWicgMcjhif6e8qFY1aQ0Prd2yWldE9Ll8emNO4LuRX5qONpg0mdZiEtMg0qKVqTPtu\nGlQSFZy8EyFBIegc7cdp44WAbOI8z28C0MHrtw+9vr8O4PWAb8B+BDJnFNpo2tS6j7dd3J8SN5lc\nTiimxDUamoL+1Vf00FlWMrmc9uE4IhTmNPSHwkJy4Lz7Lpl+WrUim29uLtki3e2/6elk12ORNHI5\nVYiEBCJFlu97yBD/12KmD47znV596BBV/rpWtvFH4gx9+tAwvYtbZx4VRYrQu5HFx9PsR+9c5N4w\n2U1Ii0zDqZJTcPJOv3H+L/76Ip4Y+AQ0Mo0HiSckkIlMHiJHrDIW58rP1TlUbEowJV6bI+3hdQ/j\nQsUFPDPoGYxs5ztCVCqp426sYm0srDVWxIbFQiVR4Ya2NyCzNBO/XvwVN7QNwB7UAIwc2bhFD4KD\nifytVpe/JyenZYTfWWpIicuC7MjONQgpIdyhUpHzWir1dOB7QyolzkhNvXYCB4jEk9RJeHfcuwjm\nglHjrMHcfq5hSrQiGlwAF2q2GZtVNaUI5+tO66WSquokcVZhBg26ur+KZm9pNBTL2qULqe7jx0mx\n9e9P+7CoFnclbrGQ/by6ml6Uw0EK/JFHyL7OnHIXLvjG23bsSDPr+vSh7yyGm5W3qKjurIfh4XRN\nZg/3/t2f190dWy7/DxJNmV8V1b8/mWPcozCCgkgRetePDh3oWdVlSgFIiSeGJyJCHoFz5eT2WH5o\nOSx2igRw8k68sfcNnC2jYGxvErc5bJCGSJEamYpsHc2S+erEV9CZryFDVQBgJO6PhKuqq/DliS+R\nGJ6ILee3+D2evRt2/MqTK7Ezdyf+sfEfjbbvB4LqmmrIQmRI1iQjNSIVY1PG4njx8foPbCDGjSO7\nNcOhy4fwW95vAR3rblLJy6MRz4ABTV7EBoON9FRSFU7nGP12LO7trz7HJuCKrqoPG3I24Hy5nym6\nACqtlXDyTmhkGshCZAgNDoU8VI6UiBThz99Mdn9ovnziTgeCEFznPuHScHx7+ls4nA5sPrcZYeHE\nhO4miQ4dyNsPuEKeGHlGRZFj7h//oMrJIlhYSJjB4HJ0jR5NzqSHH/ZM4hQVRcQdFeVyrLo7bG68\n0eXsfOklVwIqZla5+26KUGEVwD2+mIHNwCsv90yAlZBA12XnrA2fZ72FfpOO1blPsbEYJ4tP1rlP\nejqZh+ojcZZ5sner3jh0+RBKTaV4ZP0jOFF8AgA5PM12M0pM5EBQq6mBX7x4VYk7qiEJliAtIk0g\n8Wd+eQb7C/fXfeFGQm/R49DlQ5DLiVy8SXxN1hr8Z89/0C22G25ocwPyq/J9znG27CzsqnMICaF3\naLQZMfun2Zj4zUS8d+A94d6bAjzPY122K1uXtcYKWYgMSeokJKmTEKOMEZ7tH4nXf38d7x+oJTGM\nF9wn/KxZQ/b5lrAuKlPiankYDNUGvyTO2l99IYZyOdXluhZy0Zl1eHvf23j999cxYeUELD1IwfwV\n1gq8ve9tLD+0HEeKjuDV3a8iSZ0UkNKuD832mB28A0Fc3STO8zyWHlyKe3vei7t+uAvf3LQWwCCP\n3tJ91uS4ceT9ZkTIVPauXeQgWruWzCCMxNmLu3CBHJ+hoRSy5x7Ez6ZwMxIHiMSZHXDpUld0y4QJ\n9Ae4lDhLpjN/Pn0eOeJ7n0wJlJaSM5UhJqb21KvuMNqrMP9fdY+D496IgzxEDvO/ao/N7tiR7Pb+\nZva5w2Q3QSlRYlzKOLy17y2cKD4BHjyyddno37o/cnQ5AIBSMxWe41xL0anVQG6xDdJgKdpq2+JE\n8QkUGYpQZCxCZmkmesT1QCtVq7ou32AM+GQAsnXZmCvjfZR4mbkMd/94Nww2A8anjkeSOgn5lb4k\n/s7+d6CSqGC3vwaH04E39y6jZ2EzYUjSkFpJtcJaAZPNhITw2m0LF/QXEC4Nh8lmQrImGQabATd9\ncxM2z9iMIUlDYK2xQhosxeMDHkd7bXv8cuEXHCwMIHdEADhXfg7tte0FMuF5HlllWUiJSMHm85sR\nIXclydFb9LDUWDzez/ny8zhVcgqh0d1hNrcBQKbLJ57wvE5uRS5ilDF+k901Fg6nAznlOegY5TnL\nx/2eLHYLZCEyRIZJAEndShyoW4kHB/sPKwYAu8OOzec346MjH8HmsCE9Kh2DEgcJE3jWZa/Dx0c+\nxqWqS+jTqg9Cg0Ixb0gtC8s2EM2rxP3YUt2xr4Bi6nJ0OSi3lONs1RFwXO3r6zECZLk/OnUiQurT\nhyJWunQh+3JiIiky9uK++YZIhiWbP3fOFf3A7KfuJM4UcufOtdv9WKZBBpns6ow/m1EgOQYW4pSV\nVb/pxB8MNgOsNbWnVWQ5ToYmD63zPElJ1JFJwoywO+ww2Ux+Z5GZbCYoQ5WY0W0GBrUehMyyTIxp\nPwbZumzwPI+9BbTygzuxxcdTp8RxZB6QBEsQHxaPImORMH1/wc4FeGnHSw29/Trh5J3I1mWjdXhr\nyGQ0ZHa3iW86twkj2o7Alzd/iReGvYBkTbJfEs/WZQvROB8c/AAfHv4QK6aswJJRS9AluovQYXlj\n1ppZGPv1WGGClD88tO4hdFvWDW3eaQPAFbo55qsxeGzTY4L5aVS7UWirbYtoRTRKzP47DZ7nfeZX\n1Ibz5eeR+l4qDhS6FmDNKsvCuK/H4bz+PDQyDUpMJSg1lcJit+Cd/e9g/q/zPc4xfuV4/Gv7v1DR\n8yWYTCQ6jh6lka07Ht30KNaeXRtQufzBZDMJoakMu/J34dZvPVf72F+wH6nvpQrcwRadiQ5XAVKD\nx0QhBqbEDYbGT95Zfmg5nthMPqDV01bjzTFv4qmBTyG/Kh8mmwkHCw9iZreZSIlIwemS05jTdw6m\nd2uEd90PmjEVrbNeJf74AEpesTt/NwDgyJXD0GjqXiSV510mi1dfJUfngQPUi86cSYo4LY0SFrEZ\nhocPkwIHiMTXrqUwNsCl2phNXKOhlx4WRiGF8loCK9xt4gCReFgY8PLOl5H2fpoHkbMQp8xM/1OH\n60NVdZUQtucPjGDqIhKAnlGHDkBZn8ex8uRKqF5V4e8b/+6zn8lOJB7EBeGdce/gpzt+wt3d70Z2\neTYOXj6IRbsWoU+rPig1uYgtJ8flDGakFK+KR5GhCCeLT0IZqoTBZvCJPefryOFqc9jg5OvOeMZs\n1dYaq0d6W57nwfM8Pjz8IW7tdCtmdp+JAa0HoJWqFUpMJULnVV1TDZ7nPUh8+eHlWDFlBW7rfBue\nGfwMopXRfpV4QVUBdufvRrQiGh8c/MBnO0NhVSGuGK8I5S0yFCE0KBR/7/d3fHTkI/DgPQRPjDLG\n49m64/0D76PT0k4w2lzJ4dk98DwPi90Ci90CnueFMuWUu+piuaUcZeYy6Mw6xIXFYXDiYPT/uD8m\nrZqEQ5cPIa/Slf85W5cNo82IRSMWAfIymM3UdkaP9m0XZeYyIbqmMXhu63M+pp2zZWc96stXJ77C\n+JU0c4j5aqw1VsGcotDUrcR1uoY5rZ28Exa7BU7eiXU56/DqyFfxxc1fQCkhOZ+kTkJuRS5GfjkS\n7x54F71b9Ua0IhrFpmIh4q4p0HypaAOwib8w/AUsvGEhdl/aDa1MixPFJxAf3/CZaN5mJ2Y2MBjI\nyXn0KMX5RkSQ0+/XX12zyNhLjYqi60ZFuVR1XYiL81ykgh1TaaVAb/cp1A1R4h8f+dhDrTp5JwzV\nBlTX1E7iLB47kGnuHTsCkFWgyFgEHrxPGCE7D6uoDKkRqcjR5SCzNBNTOk7B3L5zPdQix7neA7OJ\nMyWeV5mHvgl9AQAnik+g7TttUeOsweJdizF3g/+gYovdAvUSNe77+b4676fUXIr22vaosFYgVEqd\nWFHIHgz8ZCA2nduESmsl7uzimvYQEhSCBFUCzpWfw7ErxyBbJMPC3xbiUtUlYYZqmbkMbbVthWNq\nI9WCqgK007bD++Pfxyu/vVKryYU9awDYmbcTRcYiTE2finfHvYvQoFCf/WvrNHiexyu/vYLW4a3x\n5XGa/PBT1k9QLlZi3rZ5eH778whfEo7wJeF4/ffXcbjoMAa2Hij4JQBAb9XDZDfhsuEyIuWRWDJq\nCSLkESgyFGHTuU0eo5RtF7ZhTPsxiFJEwSnVwWCofYUbnVkn1P3G4Jz+HM6UekYtZ+uyobfqhVHo\nK7+9gh9v/xHzh8/Ho5sexau7XhXixFVSFSLiDD55fQAicbYgd0NIfPoP0xG+JByTV03G75d+x+j2\nnsOPJHUSThSfgN1JgqB3fG8hzUht6UYag2Y1pwTXo8QBehDHrhxD34S+KDYW49Ahz9lijUGrVmTP\nzsujGWO5uRSmeOkS2buHDnXZ1d1JXKNxkXh9w67//AceybvkcjrGXGOGVqb1aDjh4TSp59w5T5u4\nP+RV5OGC3rW6sslmAg/eQ4l3XdYVO3J3CN/LzGWID4sX4rvrQno6gFCLECnibhN1v6a3bbONpg3y\nK/ORU56D1IjUOtVidU01pMFSxIXFodhYjNyKXPRP6A8AuFR1CbkVuVh5ciX+8/t/8O2Zb4Vp+j+f\n/RkLdiwQ9rPWWD1StAJEZNwCTrjXElMJ4sLioJFp4JTSPWXbduJA4QHcv/Z+TO86HcFBnvVwdLvR\n2HhuI/Ze2ovUiFS8ue9NxIXFEdnyPPQWPbQyl5KozbxRZChCvCoenaI7YWa3mZi3jWyg+ZX5GPHF\nCFRaK2GxW1BhJUNr7/jeOFt2lo4LoxAIfzbkGGWMMLo6fPkwui7rCp7nkVuRC0mwBLek34Lz5edh\ntpvx6KZHsfKWlfjoyEdYnbkaG+7agG13b8PKUytx9MpR3NHlDmTrsnH76tuRW5ErjFxyynMQqYhE\nj7geOPTgIbw//n3EhsUivzJfGB1llWWhS0wXRCoiAYUOx49TUjjmF3KHzqJDZbUvibP3VR/B51fm\nC20mqywLKe+mIEuXJTxnvUWPy4bLGJw4WIip/zn7ZzyxhUwcYZIw3H630e/szqgoan9lZQ3LC74n\nfw/23rcXG3M2YkDrAQiXesbsRimikKBKwPIJy8HP56GVa4WsrbVlb20Mmk+JB+DYBCDEkfdt1Rel\n5lLIZNe+VDfHkeK0Wl1LRyUkkJkmKclzUQI2ASIykv5iY4mM65shKJG4cmc8vulxhCrM5MG3m9E9\nrrvHEFalouxxcXF1m4oAoLK6EjqLKxSP5R9hStxkM+FUySkPc02ZuQxJ6qSAlHinTgAXahauESn3\nrdUGmwFhEs9eLEoRBbPdjKNXjiItMg0xyhhhqPvz2Z/xU9ZPwr42hw2SYAmkIVKopCocvXIUgxIH\nQS1VgwOHYC4YD6x9AE8NfAqxylgcKSJv8FcnvsKq06twwxc3IK8iD73iewl2eIDs2y/++iIAYPtF\nWk6o1ERJ1mKUMbBLiPjOm4/gX0P/hRJTCSamTfS5v4lpE7H6zGocLjqMuf3mggOHJSOXwFBtgN6q\nR0hQiJAKAnAp8Zd3vozPjn6GkV+OxJnSMygyush4/vD5WJ+zHkM/G4qMzzOQWZaJJ7c8iSn/c8nW\nUe1GCWabeBUd528ilFqqRnVNNXRmHU6WnMSpklMYvWI0tpzfgl7xvZCkTsKOvB0Y9Mkg9Evoh9s6\n34ZxqeOQrctGr/heGJQ4CBf1F6GVaTGw9UAcu3IM35/5Hrvzdwsmj2xdtse7z2iTgbzH8iALkQl1\nI7s8G2mRaYiUR8IeqsPSpeR78k6R7OSdKLeUC52VO1gStfU563Hbd7dh2GfDMGHlBI/ZvDzPCwIB\noI7rvP48NuZshEamEfwqPeJ6IDgoGB2jOiKIC8K+gn0YlzIO84bOg0qigtXpmavnhe0vILciFyEh\n5K9RKv1PdrI77JiwcgL+s+c/wm+lplJUVVehd3xvDEsehpvSfKfLchyH3MdyhVEmQHVFFiLzaT/X\nguY1pwRA4oMSB2HPvXvwzOBnIA2WCk6bpQeWBuzA8QcWFtj36vNltrJPP/VU0DIZ2c9DQylsavly\nYIfkaSxbXs/qE274/Pjn4NQFpMTtZvSI7YH1OeuxIWcDlh1chvBwstsHYg+vrK70iKdmz4ANKTef\npzXW3G3FpaZSvyT+Q+YPmP3TbHxxzLVC7c03A8kpFsH+66+yZZZlIi3Sc8jAcRwS1YnYemErUiNT\n0SWmC/Iq81BmLsNPWT9h6wXXul7VDlc+nFaqVrhivIIhSUNw8uGTiFZG44VhL2DHPTvw3JDnkBaZ\nhvzKfNgddvxy4Rdk67KxI3cHTpacRLfYblBKlIJCHvf1OCzctRAAhBC9ElMJohXRiJRH4jvzI0CQ\nA6fLj2B6t+m49PgldI7xnRE3NmUsKqsrserUKvRP6I/MOZm4u/vdiA2LRWZpJjQyT5aKUcbgXPk5\nvPLbK3hg7QMAgFu/vRVfnfhKIHG1TI0D9x/AohGLsGLKChx58AhWn1ktvC8OHG5ocwOyy7ORX5kv\nHOdv/VmO4zC7x2ws2rUIJaYSzOoxC0nqJDy55UmBxI8UHUGiOhGf3/w5AGBi6kQkqZMQqYhESFAI\njv3tGH6Z+Qu6x3VHoaEQDt6BI0VHBCXuTeIAmZqS1EmCvTlHR6MurVwLK1+JgkKHR5w5A4uJdlfi\nNc4avP7768ityAUAzNkwBya7CQtHLESMMgY3fXMTZv80G8sOLkOFtQIcOBiqDZi1ZhZWZ67G3L5z\nsfe+vRiePBzPbX0OO3J3oFccyeyecT1x4m8U8jmw9UCEBodCJVV5JFwz2oz49+//xtYLW/HVia8Q\n07a4VlNKQVUBDhQewOt7X0dmKSV5P1B4AD3je4LjOKy+bTXm9J3j99iQIM8AQCYomiK0kKFZlXgg\n5pTgoGAMShyEcGm4hy3w5d9eFhyeAKk799ja2rD1wlZUVVcJU8Q7daJ4VhaxkJDgmaYScJlvpFIg\nLMKIt/a/DnVkgMvdg+y3QQq9oMTHpozFuJRxuGfNPXhkwyPI43agoiJAErdWCurF4XQIBFztqIbD\n6cCLv76IlIgUDydSmbkMyepkDxLneR5PbXkKHSM74qlfnhKGqqGhQA1nFuyP3hEBPM/jSNER9Ir3\nHZcqQhWwOWzoGtMV0hApRrYdiee3P49Tpac8ojeYEgeAMe3Jg6yVaZGoTkR8WDy6xHTBwMSBCA4K\nRqQ8EjqLDmdKzyAuLE7II7E7fzeSwpOQGkEThi5WuNZHkwRLsLdgL8ot5fj2zLeIUcbgePFx5Nh2\nQRtPw+5kdTLiwvyvrB0aHIq1d67FhxM/RJ9WfRAbFguO49BW0xZHrxyFVu7plOkQ1QFqmRoqCU2Z\n/d+t/8PMbjOxt2CvoKgBIFGdiGHJwzA4aTDiVfHYOWunUIY99+5B19iuOFp0FNsvbhfsq7WlJLi/\n1/3YfnE7igxF6BLdBe+New/LJizD3/r8DckaqrCj240WzDFT0qfgu2nfCce30bRBamQqJMESjGk/\nBsnqZBwuOizUG2ZO8cbtnW/HU1uewis7X0FBVQHaatsiJCgEYRIVIKsQVgFyB1Pu7iaTDw99iKd/\neRoHCg9gZNuReG/ce/jy5i8xLHkY3h/3Ph7p8wiGJg3Fy7+9jGe3PotkTTJ+uP0HyEJkWJO1Bv0S\n+qF/6/64bLiMXfm78MbeNzC8DSkzjuPQOaYzYpWx6N2qNwASI8zZa62x4l/b/gWbw4Z9BfswZ8Mc\n1HT6ulYSz6/MR8eojrgl/RasOLECi3ctxrzt83BPd0psHiGP8DHJ1YZoZXSTmlKAZlfiDbs8swXW\nOGtQaioVhtkAcLrktIcTjOd5HLviOwHmn9v+id8v/Y4RIyg2PDmZFjqtL/fymdIz2JizUXBu1RUN\n4g4n76R95XpBiWvlWszqMUsYMp6105pUQ4e67sU7KqPEVIKCqgIPc0pOeQ6W7KEVIaprqnFBfwFG\nmxH39rjXY+jqbk45VXIKANkVa5w1eGbwM7i3x72CIwygToc5sLzvM78yH7IQmV8CPF1C2baYyn7l\nhlew59IeHCg8IHS++wv2Y3f+bkiDXfusuX2NoEwWjljoMeU9Qh4BnVmHI0VH0Du+N14b9Rp6xvUk\nElcnoU+rPtiYsxHfnPwGw5JpFsaItiNwrvwc3t3/Lnbk7gAPHltm0CxMTWwVHLwDspC6ZzS107bD\n9G6e9vK0yDTsL9zvYQ8HSG19e+u32DB9A76/7XtEKaLw+ECKrGKdlT90j+uOvfftxc5ZOzEwcSDi\nw+Ixf/h8rLxlpfB8/SlxAEiNTEVOeQ4KDYWIV8VDKVFiZveZiAuLQ1xYHEKDQj06WkmwBP0S+vk9\n1wvDXsDbY99GbkUuOYCDQlFmLvPrD3li4BOYmDYR1Y5qvDXmLeH+opWR+HqNzm8IHzNtuSvxn86S\neW33pd3oENkBM7rNEDoNdi/39rwX3037DjHKGLw0/CXc2P5GvDDsBQAQRoIfT/oYj/Z/FHaHHaPb\neToWl45fiuHJROwqiUoItX1z75s4ePkg3h7zNlacWAGbwwZ99Lo6STxJnYTe8b2xZPcSbL+4HbO6\nz8Ld3e/2f0AdGJI0BAsyFjT4uLrQjJN9nAEpcXdEK0iJFxuLwYPH4aLDwrYSU4kwXDLbzcgszcSk\nVZNQ+IRn1lydWUfDM841Xb+uVJcMT215ChvPbcTmGTT8tdgtQAB5m4SoEbkeYYqrkR2hSrTRtAEH\nDqPajYL5KuGOGUND1C7LumD//fs9Gt0HBz9ApbUSldZK6C16OJwOj6neldWVOHj5IDpGdYRWrhWG\nqQBQZilDK1Ur2J12dF3WFZtnbBZMGBzH4aYON2HuhrlYOIJMESyRPgCf+PPDRYf9qnAAWHPHGo93\n2jmmM/7W+2+Yu3GuoMRv/e5WFFQV4N4elCtVHirH5I4u+eZto45URKLEVILLhsvoFd8LY1PG4sfM\nH3H0ylF0iu6EZE0yRq+gxvvkwCdxsPAgWqtao0NUB7y9723c0/0ezOg2Ax2jOiJe2h6quBKES8Mb\nNZxNjUjFJ0c/8TElsXt1hyxEhsUjFgsjjdrQRtNG8PtwHIenBz/tsb22yTHh0nCES8NxuOgwHun7\niMe2IC4ICzIWoHd87/puCQB1JsmaZOgteuiterTVtvVrTgGog35uyHM+v0cqItGuk+ciIXqLHjqL\nDg+tewgATXw6WnQUXWO7Iqc8B91ju2NX3i6PfCHeGJI0BEOSXEmHEsITsGjEIiHfTrfYbnhh2Avo\nENkBKqln8qBbOrkSjKukKkGJrzixAl9P/RodozriWPExjGgzAg+u+XudJJ6sTkbvVr3Bg8eCjAUY\nnDS41jLXBY1Mgwlpfjy/14DmixPnHQEPQRiYA6nIWAR5iFywTwEUSsZ62jd+fwNzNszxazPXWXQB\n57lwtysXm4oBQDAzmO1mvzHMNc4ajxhdRoi8tEIwpyhCFVBKlHio90MYnzoeUo0e339PjpUVJ1YA\n8E3TmleZh3JrOSqrK8GDh96qF8oEAEsPLsX0H6YjLTINWpnWx5ziHpe6ZPcSXDZcRutwyh8woPUA\nXKq6JIQTMrPLqHajfJT4kaIjgu3RG+NTx2NMiidpTUmfgmmdpglKnA2p2YSg+sDMKXsu7fFRkv0S\n+mFY8jDc3f1uzOoxC7d3vh3xqnjEKGNwV5e7MChxEJZPXC7M6NOEyTH17mLB7NFQpEWmIac8x8ec\nUhv+OfSfHuaUxqCuDI9pkWm4oL8g2M+9r92Q7JDh0nCY7WaUmcswIXUCOkZ1RIeoDvUfeBUamUZo\nV07eSUr+3xFYtGsR2mnb4YFeD+BUySn0+7gfHt/0OIoMRRiWPAyXqi4hNSI14OsAwLyh8zw6t0hF\nJIaCGUQAABwVSURBVB7u+3Cdx4RJwmCwGVDjrMFF/UWkR6VDEarAZ5M/w11d74KNM+Chhx1C+d0/\n8yrzkKROQqfoTrir610Y0LoFJIVxQ4t3bLojShGFUnMpLhsuIz063YOoSkwlsDvtsDlsyCzLxLEr\nx2C0GYXwNIC8zFXVVQFNOjBUG9DqjVbC8UWGIoRJwgQST3s/DY9tesznuEc3PgrVqyqBhIWkUBKX\nOYVVwGUTlyElIgVVdr0QEcOclt7hefmV+dBb9Ki0VkItVWPBjgW4/2ff3KOpEanUoLxIPEpBMiNC\nHoFDlw/hrO6s0PhDgkIwNmUs1mev9yjzxNSJPvHnR4qOCHbGQNBK1QpfT/0a5ZZyGKqpEc3pOwej\n2o0K6PhIRSROFp9EbkWu0HgGJg7E0KShCA4KhiRYgi9u/gKfTf4MfRP6Ij4sHtHKaDw9+GlsmL7B\nw2wSJpWjVUqJTyhYoOgWS2u9eTur/kjUZk4BgCGJQ6AIVQid8bUgiAtCuDQcF/UXMavHLGTOyWzQ\neRWhClhqLDDbzUh+Oxk/ZlLu5/XZ6/HJpE/w2ihaeuzNG9/EihMrkKxJRqySkh35yxjZ1FBJSInn\nVeQhNizWo4MLDgqGSqJCh26VuPP7O4WRXcKbCXhpx0vYc2kPOkZ1hCRYgq+nft1g8flHo8U7Nt2h\nDFXidOlpTF41GSkRKaiwVoDneSw/tFwILTNUG5CtyxYUJFPFAz8ZiI+OUDJjphjWnl2LxbsW+73W\n0StHUWwqpuWTnA6UmkvRMaqjx4SDdw+863Mcc7CxyTxMiSel6TFqlCeJA+TQcx8ZVFRXIFYZ6zOZ\nI68iD3qrHpXVlUiNTMWPWT9CZ9Hh2cHP4vPJnwv7dYvtBq1ci60XtiLitQikL01HqalUcKbEKmMx\nKHEQVp9Z7aESx6eMx5YLW8DzPKw1VjhedKB1eGtUO6rx4q8vQvuaFtrX6Lx9WvXx/4JqQWhwKFQS\nFU6Xnka8Kh7vj38f747zfXb+ECmPxOGiwxiTMkYgz1k9ZuG32f6z66VEpNSa3lgeKkexqbjRJN4+\noj26xHRBWGjThYfVhyFJQ8DBv+ln0chFMM0z+Uy8aiy0ci2KjEW1OnzrgixEBovdIvhuHt30KJ4c\n+CRKni5BRpsM4ZnP7D4Ti0bQjF6Wg6Wx76MhCJOEIbciFynvpfjtnJgJctWpVZQLiOdxxXgFC3Yu\nQIIqQbCtt0Q0rzmloSQuUQpRFNJgKYK4IFhqLNh8frOwZJjBZvCIwWYmFeaFBuDhgT9Z4j+zH3Oa\n5lfmo8RUAq2MAvW9Z415LxZcZCxC5+jOyNHlYNI3k4R0rOGxevTqxcNsN3uoAK3c0/Sht+iRFpnm\nQeJO3olLVZdQWFWIkKAQjG43GoUGsvVHK6IFR+I7Y9/B8DbDBcfbklFLUGQoQrmlXDABKCVKDGg9\nAEab0WMY3i22G86UnoG1xgpJsARBXBCkIVJU11Rjd/5ufDrpU1z4xwWUP1veqARVsWGxOHz5sN+h\nf11gzq6Jqb7x3P7w2eTPMLmDnxAJkKotNjaexAHgxN9O4J1x79S/YxPhyYFPwvGio/4dmwAamQYh\nQSHCqK0hkIfIYamhSWIdIjsgLizOw/wVHBQMx4sOaGQazOk3ByumrMDsnrP/tHtzt5czp7o7tDIt\n9l7aiy4xXVBmLkPPD3siShEF4z+N2DB9Q5OGBDY1mleJN3BYogxVosRUgmHJw/DhxA8FO5x7lMoF\n/QWPHCEGmwEV1goP9csiN0w2U62x5keKjiCYC0Z+Zb4w+YKZKZgy6h7bHS9sf8HjuCJDEYYnD0e2\nLhtrs9fi8c2PC9e0OWwICQrxGI5rZBqPSBK9lUi81FyKedvmocxchivGK6hx1iC3IhdqqRoT0yZC\nHiJHaFAoYpQxQqVk8cssqmBKxylI1iRDK9cK1wyThAmOSXcyTolIwUX9RRhtRuFZSYOlsNZYkVOe\ng17xvaCVaxs9SWFw4mCsPLWywTbiKEUUgrggjE2pZdkgL3AcV2uDY0rc2wHWEHAc1+CoqmtBXffT\n1NDKtIhVxjbq/uQhcljsFpRbypEQnoCjDx3FtE7TPPZxPy/7/896lqyNTO4wGWvv9E3EpZFpcODy\nAcFkdrz4OBxOB5QS5Z9qPmsMmlGJOxFUX1yfF5QSIvEIeQTkoXJoZVqcKz/nQYJZZVlIjUgViKiq\nugo5uhyPiAKmfI02o+AMZdhyfguKjcUoqCpA19iuROKGIrRStRIULnP4vHHjG1iduVrIJV3jrIHO\nosPgpME4VUqhfGxUwHJSeEcbeJtT9BY9OkR2wBXjFby6+1XsL9iPnbk7MTx5OHjwSFQnYmDrgdh9\n726007ZDtNKlxJnCjFRE4vCDhxGtjEaSOslDWSlDlQKJuxOqPFSOGGUM5u+YL9iRpSFS6K16lJnL\nkKiuJz9tPZiQOgG/X/q9wUo8RhmDgw8c9Buz3FDIQ+QoMZUgXPLHD9+vR2jl2kanAZaHymGtsUJn\n0SFSHgm1TN2i1CsrS6wy1q/5SSvXYn/BfqRFpCHn7zm48uQVHPtb3Tn6WwquO5u4tcYqqEGtXIvj\nxcfRTtsO6+5ch8GJg3FBfwExyhjEh8UjJCgE2y5sw8mSk8IadoDLJm6y+yrxxbsWY8v5LdBZdOgZ\n1xP5lfm4WHERSeFJgkkiJYISiCeqE/Fwn4eFCTclphJEKaLQVtPWw+wSLg2H0Wb0sYcDrugD5kys\nsFYgLTINey7tAUBOtHU563Bb59sAUEgax3HoFd8L7457F4MTBwuk6x51wYg6KdyLxCVKJKgSsHra\nah9VfanqEpYdWibEoUuDpThdchrtte2vWTGNTx2Pt8a8hft61p2wyh9qC2lsKGQhsmuyif/VoZVp\nGx1N425O8Rea2FJQW2SRVqbFWd1ZpEamIiUiBbFhsUhS173yWEtBM6aidSCkgeYURoDKUOpJtTKt\nkANiQtoERCujcUF/AdHKaDw35DkMSRqC5399HvN3zEfPuJ7YOH0j3hn7jocS9ybxUnMp8ivzoTPr\nMDx5OA5ePogcXQ46RHUQhpvMbKEIVeCmtJuwPmc9dGYd8iryEB8Wj0hFJPIq8gTlrpFpYHPY/JI4\n4LKL8zyFDjKbNUDmoONXjmNgawpmd5/tdWP7G6GSqoShoj9yStYkCyT+8U0fY0HGAnAc5xFDy7Du\nTprxymZpykJkqHZUCzMArwXSECkeG/AYusd1v+ZzNRZNYRP/K0Mr0zZ4pMQgDyVzis6ia5JR0x8F\n74la3r/3jPOz9FYLR/OROBoeYsiGQUxBamQaXKi4IJCqSqIiJa6Iwf297he80AVVBZiQOgEDEwfi\nvp73odRUCpPNROYUm6c5pcRUQiRu0WFyx8nI1mVjV/4uir+Wa5GsSRbCvpShSvSM7wkH70CXZV3w\nwNoH0D6iPSLkEXDwDqEnZwmLaiPxKEUUJd6vsYADh9iwWHw66VOoJLTGaGV1paAg/KWw9DanuCOj\nTYaQnOe+Xvf5rILijglpEwSboPt5W7KyagjkoXLorXqRxGtBRpuMgH0P3rgelPi0TtMwNX2q320F\nBpojUVf7aKloVnNKQ5U4U+CCOUWmxQX9BaEXDZOECUoccEWOTE2fKuTcUEqU6N+6P7Zd3OZjTnE4\nHdCZdcjSZYHneailakxImyBk5kuPSseINiME84VSQgsjvD/ufbQOb43TpacxLmUctDItOHCIkEdA\nJVFBI9Og2lENo80o3IM72JJgeoteIOvZPWdjdo/ZROJXY8PbadthfOp4n+PrUuL9Evrh/l6+8eS1\nITHcZftm522pjbKhYJ1voAvQ/n/DuNRxuLmjnwxWAYAp8XJreYtV4t9O+xapkf4nFmUkZ2Bap2kt\nyo4fKK6rGZtMiTMijJBHEIlfJT6VhDKVMbXKVkv5/rbvPV7OmPZjsO3CNhhtRtgcNmFCi86iAw8e\nR4uOIkIeAY7j8HLGywCAtpq2GJg4EK+OehXyEDlCgkJcSZxSxmD37N3oFN0J41PHIzgoGBqZBmqZ\nGlq5lki8phrllnK/+SiSwonES82lHoQZLg2nNRrtJqikKpz/x3m/+S+YYr6WqAuGSR0muaJTmBJv\noY2yoWD+h8bEQYuoG/IQOcw1lJunqddI/TPwUJ+H8O20b5u7GI1Cs8XOOHHtSrx1eGtKKOVmewZc\nduNkdbKQsModcWFxOFVySlg44NOjn2JX/i6cKT0jrDbDTDHtI9rD+aLToxOQhch8FLU0RIpTD58S\n9otUREItVUMr0wpKXGf2by9kSjzsSpiQEwIgEs/WZSNMElanY1EWIgMHzq/Kbyge7P0gHuz9IN3T\nX1SJN9buK6J2yEPl+O70d+gc0xkj2o5o7uL8v0LzkXgjQgyZQmQkzhxuTInP6DYD87bPExx539zy\nDRy872QCZagSRptRcB5+fvxzYbFYpq7dV97xHmLJQmR+bdvu+0XK/6+9u4+R4r7vOP7+7i73wB3P\nGCgHR2xwcOzgJ9k4tZvm7MQOdVVw6iqGSOkDrYoqGTeVEj+pVc5J1Mb5p65EEtktrSI3LVXT1BAl\ncVAabSukuCENtkkNNrFbGw5zqDQp5oh9t7vf/rGzd3PL3e0uMzfD7n5e0skzs7+bmfvp+Pp7v8cg\niIcy8crwq2r9C/p58fSLvF14e9KiRfM653H87PHxUTXT6c51z8qQrkomPtVfD82okolHXc9ELlTp\nBB9YM5DoOHpJNYgXyV1kx2Z4I1KY6FlevWA1rz7wKpcvLO9/GN59Jay3o5eRsRFGxkZY0r1k0uSg\n0eIoN6y4YXwH9ql0z+muOdV5ydzyWNmFXQtZ0LmA0eLotJ0+/Qv6OfDGAXKZHLs37x6/Pr9zPifO\nnqjZhntZz2V8/3frW1CqEZW2/1ZpTqlM2oh7PWeZ+Csnzr0jpT6pNqdks40F8Y5sR7AAfTkTr3TC\nhcd+XrFoip1Qq/R0TGTiaxas4cenf8xnBj7Dfe+9j3Oj51g5byVDZ4em/f6pmlOqLe5ePN6csqAr\nCOI/PzPlcL2b+27mwVsfxMy4bfXEEpfzO+dz/OxxNizbcMH3VJuNXvVK0KveyaZZVTqxL7UFjFpB\n5a+cOHdxl/qkm4lfxD+mnjk94wG0p6OHJd1LGg4ylV0+zo2e49rl13L49GHuvfreSbM6Z+r86s7V\nzsS3X7+d5b3LuWnlTSydu5RH/uURhkeGp8zEu3Jd7Lxl5wXXK0MM0x5NEed+gGmqdwliaZwy8fTU\nFcTNbBPwBOXRLLvd/fGqzz8A7AUq27B/3d0/N9M9L6ZjE8qBOxxUdm7cOeUi/TPp7ejlzPkzzMnM\nYfP6zXz18FcnDa2rpZ5M/PbLby8fBIlJZ7aTk2+dbKhpojJksFab+Gy6+8q7WbMg+mSfS8FHr/no\nBfMCJB6VTFxBPHk1g7iZZYBdwAeBk8BBM9vr7keriv6bu2+u98EXm4nftfYu+ub3jZ9/euDTDd+j\nZ04PwyPDLOxayJ1X3MmynmUNDc+7csmV3Lr61oae2ZkLgngDIz0qQ7Wq97lM0jc/9s3Unh23Dcs3\n8MSmJ9J+jZZUycTV35C8ejLxjcAxd38dwMz2AFuA6iDe0NAIp0iuwTZxKC81GlVvRy+FUoHL5l7G\nou5FDH9yuPY3hdz4Czc2vJ5HZ7aTU+dONTTSY3nvcras39IymbC0LmXi6akniPcBx0PnJygH9mq/\naGbPA0PAp9z9pSnKjCtRSm0oUmV4YJK/cJ25Tkpearh9+5mtz8zSG4nEJzyLWZIVV8fmfwD97n7e\nzH4FeAaYsqF6cHAQgHM/PMTQir6pisy6bCZLd6470Z70ysSZVukkFAlb2LWQkUdH0n6NlpHP58nn\n83WVrSeIDwHhNRlXBdfGufu50PG3zexLZrbY3Sdve8NEEN916mXWbnhvXS85G3o7elk2N9lMvNbM\nS5FmNtUEOLk4AwMDDAwMjJ8/9thj05atJ6IcBNaZ2Roz6wC2AvvCBcxseeh4I2BTBfCwkl9cm3hc\nejp6Em1O6ch2aPU8EYldzUzc3Ytmdj+wn4khhkfMbEf5Y38K+A0z+wNgDPg5cF/N+1qROSkG8d6O\n3sSbUxTERSRudbWJu/uzwPqqa0+Gjr8IfLGRB5dofBXDOPV29CbesakgLiJxS23GppNuJv6hyz80\naQOE2daZ7cQ6mm+tYhG5tKUYxEtkG1zFME6fveOziT6vM9c5PgxLRCQubZuJJ60zqyAuIvFLLRW+\n2BmbzUpt4iIyG9Lbns3aLIhnO5nXEX37NBGRsFQz8XZqTtE4cRGZDam1idNmmfj2G7YrExeR2KW6\ns087ZeKNrnooIlKPFBfyKJHLah0REZEo0msTT3navYhIK0g3iOcUxEVEokivPUOZuIhIZJrsIyLS\nxFJtTulQc4qISCQpNqeUlImLiESUcsemhhiKiESRbsemmlNERCLR6BQRkSaWShB3BzIK4iIiUaUS\nxEsl2m4BLBGR2ZBKEC8WgUyRrCmIi4hEkWImXkp1t3sRkVaQaiaeMQ0xFBGJIr0gbmpOERGJKr3m\nlEyBXCa9jYVERFpBqpm4griISDTpZeLZgjo2RUQiSiWIjxVK5YerY1NEJJK6oqiZbTKzo2b2ipk9\nNEO5m81szMx+fab7jRaKUFRTiohIVDWDuJllgF3Ah4FrgG1mdtU05T4PfKfWPccKBXA1pYiIRFVP\nJr4ROObur7v7GLAH2DJFuZ3A14DTtW44WihirkxcRCSqeoJ4H3A8dH4iuDbOzFYC97j7lwGrdcOx\nojJxEZE4xJUOPwGE28qnDeSDg4MMnT6PHx4ln88zMDAQ0yuIiLSGfD5PPp+vq6y5+8wFzN4HDLr7\npuD8YcDd/fFQmdcqh8BSYAT4fXffV3Uvd3cOPD/MwD9soPBnNVteRETanpnh7lMmx/Vk4geBdWa2\nBngT2ApsCxdw9ytCD/sb4BvVATysUCyqOUVEJAY1g7i7F83sfmA/5Tb03e5+xMx2lD/2p6q/pdY9\nRwsFdWyKiMSgrkjq7s8C66uuPTlN2e217jdWKGLKxEVEIktlymShpCGGIiJxSCWIjxYKGMrERUSi\nSicTLxbJKBMXEYksnUy8qExcRCQO6axiWFSbuIhIHFJqTlEmLiISh/QycQVxEZHI0tmeraSOTRGR\nOGiIoYhIE0ttsk8mtgUURUTaV2odmxll4iIikaXTsalMXEQkFhpiKCLSxFJsE1cQFxGJKsU2cTWn\niIhElV4mbsrERUSi0hBDEZEmltKMzQJZZeIiIpEpExcRaWIpBfGC2sRFRGKQ3gJYCuIiIpGlNGOz\nQFbNKSIikSkTFxFpYukEcS+SNWXiIiJRpdaxqSGGIiLRpRLES8rERURioSGGIiJNLLWOTWXiIiLR\n1RXEzWyTmR01s1fM7KEpPt9sZi+Y2SEz+6GZ3THT/YquNnERkTjUTIfNLAPsAj4InAQOmtledz8a\nKvZdd98XlN8A/DOwbrp7Fr3IHAVxEZHI6snENwLH3P11dx8D9gBbwgXc/XzotBf4n5luWPQC2Yya\nU0REoqoniPcBx0PnJ4Jrk5jZPWZ2BPgW8MBMNyyPE1cmLiISVWwdm+7+jLu/B/g14OmZyhZLRXLK\nxEVEIqsnkg4B/aHzVcG1Kbn7ATPLmdkSdz9T/fng4CBD//p93sr9hPz7r2VgYKDhlxYRaWX5fJ58\nPl9XWXP3mQuYZYGXKXdsvgn8ANjm7kdCZda6+6vB8Y3AP7r72inu5e7OdX+8g7Vzb+Trj+6o80cS\nEWlfZoa721Sf1czE3b1oZvcD+yk3v+x29yNmtqP8sT8F3GtmvwmMAiPAfTPds+gFchm1iYuIRFVX\nw7S7Pwusr7r2ZOj4C8AX6n3oO5ylKzOv3uIiIjKNVGZsvmVvsCTXX7ugiIjMKJ0gnnmDpQriIiKR\nJR7E3ym8w9uZ/2VhbkXSjxYRaTmJB/ETZ08wt7iSOTl1bIqIRJV4EN++bzu9hX4yqTTkiIi0lsRD\n6Sdu+QTXnfgyc+cm/WQRkdaTeBD/yHs+wrn/upq+C1ZfERGRRqXSqDE0hIK4iEgMak67j/VhZl4q\nOV1d8LOfQXd3Yo8WEWlaM027TzwTP3MGenoUwEVE4pB4EB8agpUrk36qiEhrSjyI33ILvPvdST9V\nRKQ1Jb4zw5kz0NWV9FNFRFpT4h2bST5PRKQVXFIdmyIiEh8FcRGRJqYgLiLSxBTERUSamIK4iEgT\nUxAXEWliCuIiIk1MQVxEpIkpiIuINDEFcRGRJqYgLiLSxBTERUSamIK4iEgTUxAXEWlidQVxM9tk\nZkfN7BUze2iKzz9mZi8EXwfMbEP8ryoiItVqBnEzywC7gA8D1wDbzOyqqmKvAb/s7tcBnwP+Mu4X\nbTX5fD7tV7hkqC4mqC4mU33UVk8mvhE45u6vu/sYsAfYEi7g7s+5+/8Fp88BffG+ZuvRL+cE1cUE\n1cVkqo/a6gnifcDx0PkJZg7Svwd8O8pLiYhIfWLdY9PMbgd+B/ilOO8rIiJTq7nHppm9Dxh0903B\n+cOAu/vjVeWuBf4J2OTur05zL22wKSJyEabbY7OeTPwgsM7M1gBvAluBbeECZtZPOYB/fLoAPtNL\niIjIxakZxN29aGb3A/spt6HvdvcjZraj/LE/BfwJsBj4kpkZMObuG2fzxUVEpI7mFBERuXQlNmOz\n1oShVmNmu81s2MxeDF1bZGb7zexlM/uOmS0IffaImR0zsyNmdlc6bz07zGyVmX3PzP7TzA6b2QPB\n9barDzPrNLN/N7NDQX38aXC97eoCyvNQzOxHZrYvOG/LeojE3Wf9i/L/LH4CrAHmAM8DVyXx7LS+\nKI/QuR54MXTtceDB4Pgh4PPB8dXAIcrNW+8K6srS/hlirIsVwPXBcS/wMnBVG9fH3OC/WcrzKm5r\n47r4I+BvgX3BeVvWQ5SvpDLxmhOGWo27HwB+WnV5C/CV4PgrwD3B8WZgj7sX3P2/gWOU66wluPsp\nd38+OD4HHAFW0b71cT447KSc4PyUNqwLM1sF3A38Vehy29VDVEkF8UYnDLWqZe4+DOXABiwLrlfX\nzxAtWj9m9i7Kf6E8Byxvx/oImhAOAaeAvLu/RHvWxZ8DnwLCHXPtWA+RaBXDdLVVr7KZ9QJfA/4w\nyMirf/62qA93L7n7DZT/Gnm/mQ3QZnVhZr8KDAd/oc009Lil6yEOSQXxIaA/dL4quNZuhs1sOYCZ\nrQBOB9eHgNWhci1XP2aWoxzAn3b3vcHltq0PAHc/C3wLuIn2q4vbgM1m9hrw98AdZvY0cKrN6iGy\npIL4+IQhM+ugPGFoX0LPTpMxOcvYB/x2cPxbwN7Q9a1m1mFmlwPrgB8k9ZIJ+WvgJXf/i9C1tqsP\nM1taGXFhZt3AnZQ77NqqLtz9UXfvd/crKMeD77n7x4Fv0Eb1EIukelCBTZRHJRwDHk67RzeBn/fv\ngJPAO8AblNeUWQR8N6iH/cDCUPlHKPe4HwHuSvv9Y66L24Ai5VFJh4AfBb8Pi9utPoANwc9/CHgB\n+GRwve3qIvTzfYCJ0SltWw8X+6XJPiIiTUwdmyIiTUxBXESkiSmIi4g0MQVxEZEmpiAuItLEFMRF\nRJqYgriISBNTEBcRaWL/D0/4iN+zdJOWAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7fc26840aa50>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FFXbBvD7ScIGQhoQaoCEKr0JgoKIgNKUoqgg9kax\nv6KIjSBdpEovNkAQQQVUqhJEREGBoKHXj9CbgZC25f7+OOkJycquWUKe33XtlZ2ZM2fOnMw8c+ZM\nWSEJpZRSBZOXpwuglFLq2mkQV0qpAkyDuFJKFWAaxJVSqgDTIK6UUgWYBnGllCrAnAriItJRRPaI\nyD4RGZTD9GAR+VpEokTkNxGp4/6iKqWUyirPIC4iXgCmAOgAoC6A3iJSK0uytwBsJ9kQwOMAJru7\noEoppbJzpiV+C4D9JI+StAJYBKBbljR1APwEACT3AggXkdJuLalSSqlsnAnioQCOZRiOSRmXURSA\n+wBARG4BUBlARXcUUCml1NW568LmaAAlRGQbgOcBbAdgd1PeSimlrsLHiTTHYVrWqSqmjEtD8jKA\np1KHReQwgENZMxIRfVGLUkpdA5KS03hnWuJbAVQXkTARsQDoBWB5xgQiEiQiRVK+PwtgA8m4qxRE\nPySGDBni8TJcLx+tC60LrY/cP7nJsyVO0i4iLwBYkxL055LcLSJ9zWTOAlAbwGci4gAQDeDpvPJV\nSinlOme6U0ByFYCbsoybmeH7b1mnK6WU+u/pE5se0qZNG08X4bqhdZFO6yIzrY+8SV79LW5dmAjz\nc3lKKXUjEBHQhQubSimlrlMaxJUqhE6dAkaP9nQplDtoEFeqEPrkE2DwYODoUU+XRLlKg/h16ORJ\noHfv/3YZa9cCb78NbN5s/ublzz+B6tWBWrWAixf/27Lll507gSpVgLAw8/nyy+xpJk0C5s/P/7I5\na8sWoFo1U/5nn807/cGDJv2IEcDttwNNmwI9egB6qer6M3t2+raZm0ITxPN7I3VleX//DXz1FZCY\naPJxNi+Hw/llTJkC/PgjsHUrsGZN5jwcjszLtNuBjz4C+vQBgoOB7dtN2azW7PPFxprPlSvZl0kC\ncTk8AvZv1jF1WTYbkJCQ87Tc8kpdlsMB/Pwz0KqV+Tt6NDB2bOZ1SkwExo0DVq50vmwZJSebuoiL\ny7yOV/s/2WwmvT3DCyuy1k1iokkHAJcvA5MnA088Afz0E7B0KXAo23PSmW3aBNSvb4L5+vXm/799\nuzmYJyfnvEzlGZs2AS++aLbP3BSaIH7nnWaDzQ8bNgAdOlz7/EeOmB05Ohr48EPgvfecm691a2Dj\nxrzTnT1rAveRI+kfwASH0FCgXTtg3rz09H37mpZ7376m5RYVZVpzLVuand1qBerUAe65ByhfHqhc\nGShd2gSHjEaPBgICgB07so9//XXn1jE2FqhQwZSxdOn0wJOqRg3grbeuPv+AAcC995r5o6KAW281\nLZ0HHzTrcttt6QGsXj3Az8+kuxYdOpj6DAkBwsNNy3fqVOCZZ3JO3707UK4c0KtX+rgVK4CHH05f\n99BQoEsXYPlys/6//AI895z5f/TvD9Subc7kriYqCmjRAihbFvD2NuV69VWgY0egbl2z3XXpAtx3\n37Wts3KfI0eAJk3ybonn96OjzC8OB7llC3nuHGmzkcWKkdOnk+fPp6eJjyfPns0+b0yM+ZuYSJ45\nY76fPk0mJZnvSUnkqVNXX/bo0WRgoCkDSdrtJs+DB8mNG9M/sbFm+rFjJm3q37ffNm2huXPJ++4j\n27dPL8f27enzkenjo6PNPDNnZh6fWva//kofP3ky2bs3abGQnTqZ+fbsIf/+O7UNRg4YYNLv2kUG\nBZl6JMnZs8m77iJDQsgqVcg//zTLTJ3v6FGTbuhQ8oUXMtdLt26knx85a5YZTkgw9VC1KtmqFRkV\nRf72W3q9JSWl19Xp02bchg1mOSVLmvmiojIvI7UcGzeaOsnozBmyUaP0NKVLk7/8kj7d4TDr9Mcf\nZn0DA00ZixY1f1Pt32/yv3DBDMfEpJc5o3LlzLTU+ilenKxXz2yL//xj0mzbZvJasYIsVcpsn8HB\npl5J8s03yYYN0+v+nntM3TdqRM6bl32Z7duT33+ffXyqdu3IH37IeVqTJuS0aaastWvnnOb4cfLA\ngczjrlwhN20ik5Ozp4+JSf8fpv6vjh27evk8JbVMrpZtzx6TR3IyefJk+vgzZ8iLF009pNbh8eO5\n5xUenl7XKbEz57h6tQn/xSc/g3hqQHruOXL3bvM9OJi89970NG3amB0towsXSF9fE+BnzTJBlDQB\n6OOPzff5881OdDW9e5vlHTpkhletIkNDTTBs2dJ8qlQh33nHLCcoKD0Iz59P9ulDNmtGPvIIWa0a\n6eVFBgSQq1eb7z17mny3bDEB4eJFs7MXL06+9ZYJ2BaLCXwOB9mggZlv507Sx8fkuXq1+evvnx7U\nJk0yAaN7d1PGM2fMcocMSV+3nTtJERMs3nuPvOkmsmxZc4B8++30dAcPmmCTeuAjzUbZvz/5/PNm\n+MUXyZo1yQcfJL29yRIlyPLlTR2QZl2qViXr1CEfesiMmzyZvOUWcsoUM+7zzzPXfXAwedttpvyB\ngWanIk1dWCxkkSJk377k+PFmHeLiMs8/ZAj50kvkjz+aAwtp/hdr16anqV6drFyZfOUVM1yjBvnz\nz5nzSUgw25Hdbv4/bduauixbluzYkVyyxOzkRYumbxOTJ5t5x441aY8cMQfZ4GAz/vbbyW+/JadO\nNdtx1rKT5GuvkSNHZh9Pmm0hJOTqwePbb005GjQwdZyV3W7+h/7+Zp1SjR9vtp8lS7LP0769ya9l\ny/Rt0scn+4HAkw4eNOt08KDZh6zWa8vn+HGzb7RpQy5ebLZbh8M0FH19zb5Sp47Zdvz9ybAwU6c5\nsVrNtpq6/9zwQfzAAdNqPXjQBM6YGNMSDA01G+OiRaZyAbMBLVtmKg8wgePsWRNEFy40+QDk1q0m\n4KQG63r1TNAhzY4CmB3399/Ty7F2rcmncmWyYkUThOx2ctQok75bt/S0S5eaVtWiRWbaypXm7623\nmsD25ZdmRy5WzLQ6LRazPm+9ZYL+Rx+ZHdxiMQE0NJR8/XXy4YfNX4uFfPxxcvhws7E0bJievkIF\nc3bStm16AAfIpk3JYcNMa9Dfn3ziCXNAycjhIOvXN3Wwf7+ZL2sgTZUadFLrpnhx87dWLXNgDQlJ\nP9CFhpIjRpj1vvlmE6gqVDAHpL/+MnWycCF5xx2mtUiaYNWliwl2UVEmqKUGTpL83//MQXjqVFMX\nFovZkfLalkqXJnv1Sj/YTJxI3nmnyeeHH0w+K1aYIL96dfoBMKO9e81BMlVcnEnXqZM5ePfvb4Jf\n27Y5l6N/f1OGkBCz7W7fnv2gmJPPPydbtCAPHzYt96lT0z8LF5o8cjpryOj4cbJMmczjbDZyzBgT\nkHv2JJ95xuQZFUU++qj5/73zjkl76pQ5+4iNNWcXqS3S6tVNQwgwB8sff8y7LKn27jVnHjabc+mz\niokxefz0U/q4LVvIuCt2Lv7KToD84ANTtl27rp7PhQtm+1u4MPu0Dz4w+3hwsGlUAWY/nTzZbDP+\n/uaspW5dU4cNG5Lr15v9aOpUc5aZ6uhRU6epbvggnhpUS5YkO3dObwkPGmRO3994w7QEAFO5wcHk\nmjVmuHJlc9pfqpTZWSwWM37OHNOiK1HCbGgBASYokaZ1UbmyaZUAJmjExZn5S5Uin3zS7ORhYWY5\nDz1EPv2Mgzt2pG+xBw6QlSqZndrf3wSwgAATeF56yZxuz5xpdvSPPzYb/CuvmNP8Tz4xO/nLL5uD\nTqlS5lQ4MpJs3ty0ZpctM10i/fub0+vHH09vLa1YYcqwdCk5eDC5fDnZoYOZHhlppg0daubfvTt7\nfa9ZQ+7YYb7PmWM2zJzMnk326EFeumQOPBMnmnp64AHzvwoZcD+fWfYMSfKzz0wrLSHB/I/69zdB\ngzSnphaLOTAOGJDeZbN3r/kflSxpgnx0tGkVpzp2zPxv+/c38/30U847X1YTJph5tmwxwxcvmv/L\n00+bcpQvb8qa8QD45JPZ6yhrgA4JMev21Vfp8736as5lOHzYHEQGDzatt/vuy949lZNTp8z/slQp\nEyT69zefvn3N2Vi7dnnnYbenn43a7DYmWBP4zYoEhldP4Kp1Cdyx08r+/c2+1qMHWa9RIkPfu40t\nHl7DBGsCR4xJIMTO5/o60g4GSbYktm9vzvKqVTPrBGTu9rParUywJjDBmkCbPXO0vv12s5/88APp\ncDbyZ9CrlznbSw1BiYlkYIWT9InwpQzxIiptYp36SQTIL764ej4DX3ewVSsTV7J2xbZvb/at8uVN\noO7f3+zjpUqZ7XvxYpPuxx9NT8G4caah1LatqZcSJUydJ9mS+MknDt7bNX09b/gg3rMnef/9ZgcL\nCjKn0QEB5HffmdPxqlVNQLBYTEB47jmycWNzSmqxmJ2rZEmyXz9TIxaLme7nZ1rugwaZU5ugIPKb\nb0zeL75oxgFmA0k9kJQvn346NmmSacmHlHbw7tkPcvrW6SRJu8NOu93kExhIPvss2bWrCUhZN1C7\nwzQrHQ5HjhtvcjJZsvJJlnq/Kg8dNi2Kps0yn6NZ7VaOGZfAOvWsjE9OoNVuZXxyfNp0m93GyTNj\nWal6LG22nHeQ1HLk5NVVr3L8r+OzpfvnH7N+99yT+SzkyhXSLyyaiACrTaqWNTuSZGxiLBOtiWnD\njRrb04J6Rtu2pRzAQ6y84+5Ytm1/jefCTnA4zA7ZooUZLlfODNeta7aXuDhy4EDTfda9e/bA3rSp\nOYiknsGULEl++unVl5dal5272NPODp2x/0gcxXKFq1ZlHt+hgzkYOaN6dfKPnZdYdnhNeg/xpbzr\nS58IX/oO82XZsWV58MJBRkc7GFo1lj4dB7HEyBDKoFL0HupDr/csLP1WM+J/oWzRbSdHbxxNiRA2\nf3k8AdNASD2Ipa7Td985WHJUafoO86VlmIUNpzdk9OGzHPBiMp991uyjEyeS9RtaWW1cPe49t5fT\npuXcpTRtmtmXUz8//GC2Q9N16ODYsQ726EEGNF7JwBfasWq/gbS8VpOIAMPviGSzZuYsL3V3u5R4\nibGJsTwee5Ler4Xx+9/2slUrc1Y5dao56Dkc5gwuJobs0NFG+MTz8GHTOi9fnky2Zt9/Tp40MaBU\nKXNQuftu8va+S+jzvg/9BzZikaG+aWlv+CDerJm5YLB5szklWbPGdHUkJJgWSGr/9Pr1Jv2mTUzb\nmCpVMkf5bdvIS5ccDAy28Y03zIbw5ZeZW1uNGqV3X3zxBQkvK59/3rTcREzf7u9brWnBNj6enD4r\nmY9Omk6/EX7strAbE62JrDWlFv8+/TdXfGfnup+sHD3a9JW2e/onIiK9jqJORTFsQhhPXT7FkT+P\nZM/FPXMM5KOXLyYiwB0nozj7k3jeNKEBp22Zlja984LO9B8RwOrj6jFgZADrT6tPvxF+jE2MpdVu\nZcu5LVl8RHH6DC3Cz3Z8lq0VlGBNYOUJlbnx6EaS5IX4C2nlsNqtDPkghJ0XdOapy6dYcXxFfr/P\nXFmz2W388UcHP5xykYcOZ96In5z3DvsuH0C/EX48d+VcWnqb3caPfv+IlmEWlv+wPOOSzF56y0d3\ncdT6CTwTd4aXky6n5ZNoTeKydadYf1JzFokoyrtm9kqb5nA4eO7KOadabja7zal0bduSD/YyB4oN\nG0yfe3S02REjIswpsMViuvGyXlj9/XcTdBwOct068tffbJkuUmcsS7ItmS3mtOCojaPYfuYD7DV1\nhFNdD+sOrqPvMF/6vl+My/d8zzNxZ3gm7gwdDgf37jVnMQ6HI9PB1ma3MT45PtOBvVMXK7uOH8Ii\nDz7GKVPMGVfqxd2xm8bSd5gvm89uQbxdlMXeqMG/Tv3NysNuYaXaJ1mnro2tp9/LW8c/yOLDAxk+\nMZwbjmyg35AQosxO7tpl9juA/HjhOZ6JO8PbOhyn5V3T+e9wOPjkt0+yyBA/ln61A6dNM/tsQgLZ\n7rnVRAT4zrohtFjMWWlGx4+bM+2pU80+/L+BNhbxi2fnnme49pcLLNl1FPHg/XxvzBn+7+vR9Lvv\nZfo2/IaIAKuMaM7nl7zHMVPOsEJ4HLdtI+f8OYeWYRYWH1GcgSOD6fVGWTaf3ZwDXrDy3q42AuYM\n78QJsw04HGTXuU/SO8KH/yTEMi6OXL7xIMuOLcs1B9YwNjGWdoc9bVtbuTL94vqBAw5aBlVinyEr\n6d2vGREBno83d2Lc8EG8dGlTiRlZ7Vba7DZu2JjM4BIOJtvSW2gOh2lpLF9u+linzzKX1T/b8RnL\n9XuMi5emX2ZPC+JeyRw/3sGmTc34NRv+IV4P4eJl//BC/AXeefcVTphoY5tP2/DVVa/SZrfR7rCz\n34p+LPdhOf6w7wciAgwYGUBEgIgAW3/Sms1nN+cnn5hlNH/3tUxB/I01b7DCuAq894t7WWNyDYZ8\nEMK1B80VtnNXzjEmNob/JPzDV1a+kpZn+8/bs/UnrVlqTCnuObuHMbExDB4dzOlbp/Oxbx7jp9s/\nZZ+lfdhiTgtWGl+JjWY0YvvP29PusHP61umsOL4i602rl2mH/nrX1wz5IIQ3z7yZaw6soddQL/Zd\n0ZcxsTFcuX8lq0+uzhKjS/CVla+w/eftWWFcBZ67co5vrHmDjWc0ZpH3i/DBrx5M23DPx59nhXEV\nuO3ENvZY1IPlPyzP1QdWs+L4irx55s30H+nP9YfX885P72TgqEBO+X0Kg0cHs8rEKgz5IIRBo4L4\n6//9yosJF9llQRcGjw5mryW9+Nux39hkZpO0ci/fs5yIAN9c+yaTbEmMiY1hTGwMz105l2k4JjaG\nHed35HPLn2NMbExaOWMTY9OmX0q8RJJ8ZWACQ96rw6hT5laL03GnabWbg7mXlzllrlTJNAAycjgc\nPHXZ3NIUlxTH7ou6s9XHrbJtyxHrI9hjUQ/Oj5rPZrOasfQHpRk4KpDFhhfLdGZyNX2W9uFHv3/E\nVftXsdyH5RjyQQiLjyjOET+P4Om407TZbbz/y/v57k/v8nTcaW4+tpkVx1dk6LhQlv+wPKPPRHPv\nub0MHFKZ8nZxtn9sS47LiT4TzVvn3Momrc5x7tzUdTTXjry9M9/Nk+r+4XOJfg2ZZEtih/tP0q/p\nYhaJKMagUUH0eq0i5fn6vO02pn38w3ez0tjqmeqwyYS7WK7vEywzOpRSaj9vb5veFD92zJwRPf20\nGf7zxJ8MHRdKr9cqMXB4CP1G+NH73eL0eqEeg0cHExHgXW/OYsf7zvL2j2/nsj3L0vZRvyGlWbnW\nWfq/0oK1u37P+3va2WLcA2zx8Dq2/7w9i79fkuhfj7Vrm/93/frpXVX1p9UnIsBtJ7aRJB//5nF2\nmt+JZceWZfERxYkIMGJ9BEnTdZLq8MXDLDG8HMXLwX79yHafteN3e78jmXsQL/BvMYyPB0qVMg+X\neKXc9X7wwkFU/6g6GpVrhMtJl9GsdBuUDvbD5E6TkWRLgq+PL06eBOzFTuLQyVh0X34bNj21CdP/\nmI55UfMBITY8sQHl/MvhykV/wPcyui7uiFdavISmpdoiMMiBeVuXY8jmV/Bx65/Qf1MntAq9E/2a\nDsCIX9/D2StncfzycQy7cxgW/LUAX9z3BRqXb4x60+qhQdkGqBRYCR/8+gEAILhoML5ocBGdOwNN\nJ92NPy6uBYcQZ6+cRf3p9bHqkVV4fe3rEAg6VOuAbae24fXbXkerj1sh0DcQNocN1UtWR4OyDbA4\nejEuJl7EukfXYc+5Pfh85+doVqEZku3JmHXvrEz1NnDNQEz/YzpuLn8zFty3AJWCKmHn6Z1oOKMh\nyhYvi0EtB2FAswHw9fHFQ0sewp3hd2LohqEIDw5H15pd8e3eb3HgwgEk2hIxou0ITNs6DecTzmNZ\nr2X4evfX+L/Y/8Ovx35F1RJVMbLdSDy57EksvH8hbgm9BUMjhyLmUgxmd50NAKg8oTISbAnwFm/Y\nacfN5W/G9w9/j2/3fIthPw/DnnN78EyTZzCl8xQAwOdRn+OtH9/C5eTL8BIvnHztJIr6FMWpuFNo\nML0Bzrx+BgAwNHIojl8+jhX7ViDINwgXEy/Cx8sHsYmxqBRUCRcSLsDHy7xSv2HZhriQcAF7zu3B\na7e+hnfveBfhE8ORZE9K+z8tuG8BOs3vjDPxpzGp4yS0rdIW9afXxz0178Hi7ssRHS24+WYg5nQC\nKpYthivWOCTbk1GyWEn0/64/5myfgw/v+hDf7PkGvx77Fb4+vrg8+DIA05hac3ANHvv2MSTZknBX\ntbvQqlIrVAiogM0xm7HgrwWI6heFcv7lctwPSGLria3otKATdg3YhbL+ZdOm/XHiD7T+pDVsDhtq\nlKqBy0mXcS7+HGwOG4p4F0F4cDh61+sNHy8ffLTlIwBANa922LjlH3zXZxm6dMnx5XkAgBMn0u85\nB4DTp4Fz58w951klJRHdFnXDsSsHse/8PojDgjsvz8awZ25H8y8ro02FLhhe57u09F5+sbhrZSji\n3opDki0JU7ZMwfwdX+LIe5tw+7tDsPbMZ0hOFqzsswo1wopj0mTgyGFg5EigWDHgg00f4Of/+xld\nwh/AmE4R2Hk6Ct0mvYuwzcuw7kcbGsxogIXdl6BqQF0EBgL/JP6DetPq4a/+f6HXkt74+chGVPGv\nh2lNN+J/L1vg42Pu/X9u4DHc8WkbHP7nEJIGO7B5azJ84IvwcKBMOSsCRwfijrA78HTjp9H1pq6o\nPbU2vnv4O9QpXQerD6xGxwUdcW/NezGp4yQ0mdUEC+5bgM41OmPmHzOx9tBaDK62BHXqAGO3vI+L\nCRcxoeOEXN9iWOBb4n//bS5qpVr89+JMrV1EgMGjg1lnah2SZMPpDTn+1/E8d+UcEQH6DvNl+MRw\nNp3VlLd/fLvpF5sYzioTq9BvhB+rTKzCgJEBbDqrKYsOL8qSY0qmTfd5pRYf+eoJBo4yp4yvr3md\n70e+z7UH1xIRYNeFXRkwMoBWe/Z+2rNXzqaVb8WmA0Tx0wwdF0pEgA6Hg90XdeegtYMyzXP80nHW\nmlKLvsN8OXD1QJJkmbFl6PO+D8/Hn+f5+PPssahH2llAn6V92GxWM569kv1m+A1HNvD1Na9nGmez\n29hhXgcuiV5CRIB+I/x4Oekyg0YF8dyVcxy7aSwbTm/I03Hmpu3LSZd5zxf38MSlExy8bjAtwyxM\nsCYwPjme7T5rxwcWP5CW94DvBnDcr+NIZm5hkGSvJb0YNiGMS6KXpPWtpzoff56d5nfihfgL2dbh\ny7+/5Ls/vZs2bHfYaRlmSTuL6Lm4J7/Y+QW/3/c9H/360bQuhDUH1rD3kt459vNvPb6V1SZV48EL\nBxkwMiCt6yFoVBDfXPsmEQFahln44FcPcuqWqXzk60fYeEZjjv91PHef3c1tJ7ax/IflOXXLVNaf\nVp9Bo4I4YfMEhk0I458n/mTQqCAWH1GclxIvsdSYUvzl6C/cfXY3n//+eZYZW4bf7v6Wj379KBEB\nbj2e3glea0otRp+JzlbeVN/v+57FRxTnnD/nZJvmcDjYc3FPbonZws4LOjPqVBQf+uohbj62md0W\nduOhC4eyzXPokLlwf623213Nqcun2O6zdtx+cjubjOvI5rdfYvUaDvq8E8h+K/plK7ffCD/+k/AP\nW3/SmjUm1+Dus7sZFma6rD78kGw28H0GR4QzfGI4fV4LZ4Ux5nv4xHDWnlKb+8/vz5Tn5Mnm4nJe\nVuxdwddWv5Y2nHpXzfLl6WnCJoRx0NpBrDO1DuOT43kl+QpX7l/JGpNr8LXVr3HwusFp+3jGbe3o\nP0dZ+oPSbP1Ja/Ze0psVxlXgsA3DGDQqiPOi0m/+jz4TzdBxobQ77Dd2d8rCheQ9D5h+oxOXTrDM\n2DL8PeZ3vvPjO0QEWPOjmvz5yM/0H+nPDUc2sOzYsgwaFcRfjv7CulPr8ullT/OP43+w4/yORAT4\n6NeP8tf/+5X9VvTjd3u/44DvBnD5nuVMsCaw28JuaafEJDnu13FpXQu+w3zZdFZT/njoR5LkL0d/\nofdQb3aY1+GqZX946cMs/UFpeg/1ZoVxFVhseDF6D/XmjK0zWH9a/RxPn212Gx/5+pG0HbrtZ21Z\nYVwFd1YprXYr7/r8LiIC/GT7J+y8oHOe8+w5u4fPLn/2qtMX7FzADvM6cMfJHQwYGZDW10eSS6KX\ncNJvk646779RZWIVrju4jlGnolh9cnXuPLXzX83vcDjYdWFXFhtejC3mtEgb32FeBxYfUZztP2/P\n4RuGs9SYUmzzaRvO+XMOo89Es9GMRrzpo5t400c3sf93/Rk0KojhE8M5d9tc1p1al5GHI0mSneZ3\nYuMZjUmSr6x8JW2elnNbpl0bOHX5FBvNaMRkW3q33q1zbk27JpFVXFIcB64emHaK7i7XcBPIvxIX\nZy42tm9P3jrnNo74eUS2NNUmVeMzy55h609ap12rSUw0ty86HObhsBo1zK2stWs7V+ZrXa+sF1Gf\nW/4cfd73YfXJ1fnKylfYeUFnhk0I4+trXuf0rdMZOCqQoeNC0+7AyqjDvA586KuHaLPbOGzDMDaa\n0Yi7z2a/FazZrGacsHnCjR3Enx78F4MiKtHhcPDNtW/y5ZUvkyQ/3f4pEYG0VkbLuS3ZfVF39lvR\njx3nd+Rj3zzGu+fdnZbP8UvH2Wdpn391+9KfJ/5kw+kNue7gOpYcU5KIQNpFt4sJF4kI5Ngyyqjd\nZ+1Y/sPyLDmmJJvMbMJSY0qxzNgy/PnIz7nOl+qlH17KtB7u1HhGY1YcX5Gf77jKjeD/wolLJ9hk\nZhPWn1afD371oBtKlzOf932ICLD+tPpsObelU/3IWTkcDt700U2ZDkqfbv+UTWY24fFL5kmZaVum\nsfGMxjxy8UiOeXy+4/O0u5Ey+n7f95y4eeK/LlOXBV24fM/yHKf1WNSDiEDa9ZKCZMgQc3FvwuYJ\naQe6jBrPaJxpP87K4TDPCoSFZb/I+V87e+UsH1j8AI9fOs7QcaEMHBXIK8nmftsdJ3ew0YxGaY26\naxV1KorYLHQrAAAZgElEQVRNZzW9MYO4zUYuWRHLKvfPJSLAX//vV7ac2zJtQ954dCOLvF8krSuj\n5+KerDqpKkf8PIIzts6gZZiFj3/zuNvKgwiw6PCimcY9+e2TOXYDZE3Tc3FPdlnQhY998xjDJoQR\nEUjrssjL6gOrOfvP2ddc7txM3DyRd31+F2MTc7iF4jo1auMoLvzLiZvB8zB321wu27PMDSVyj0e/\nfpSfbv80bdjusPP3mN958vJJBo4KZId5HTLdtXOjSO2OuN79eOjHHM8k3CW3IO7UDyVfj/78E+gz\n5z1YG5rfa77t49sAAM1DmwMA6pepj35N+6VduCrjVwaHLh5CmeJlUL9MfSTbk1Hev7zbyjOi7QjU\nCqmVadzH3T7Oc77ONTrD4m1Bsj0ZPl4+2HZyGwCgZLGSTi337mp3//vCOunlFi/j5RYv/2f5/xfe\nbPWmW/J5qvFTbsnHXUoULYELCRew8/ROlChaAmsOrsGLK19EgG8Aut7UFfN6zMs7kwJo3N3jULZ4\n2bwTeljbKm3Rtkpbjyy7wAbxw4eBYrU2IskrEffUvCctMAf4BgAAgooGYXKnyWnpyxQvk/a3Tuk6\nAIDyAe4L4m/dnsur83LRs07PTMNjNo1BcNHgtIOPUoA5qC/dvRTDNw6Hr7cvKgZWxOx7Z2PD0Q0Y\n0XaEp4v3n/nfrf/zdBGuewU2Uuw7Eoe4ontQxKsIXrrlJdxV7a5c02cM4gG+AQgPDndrS9xdAiwB\nCPEL8XQx1HWmRLES2HRsExb3XIyTcSfxW8xvuK/2fejToI+ni6Y8zKkgLiIdAUyEef/4XJJjskwv\nBWA+gPIAvAGMI/mpe4ua2faTO1AhpC6ebd0VN1e4Oc/0qUE89dTs1RavonnF5v9lEa9JgG8AShUr\n5eliqOtMXLL5NY1utbrB4m3BS81f8nCJ1PUizyAuIl4ApgBoB+AEgK0isozkngzJXgCwg2QnEQkB\nsFdE5pO0/SelBrDvn79xU/UGeKf1O06lz9gSB3Dd7gT+Fn9tiatsetbpCYu3BRZvi6eLoq4zzvyy\nzy0A9pM8StIKYBGAblnSnAIQkPI9AMB5VwP4rl3mF0gefBA4fx7o2dP8ekyjRuaXumOS/0aj0HpO\n51emeBn4FfFDcUtxV4r1nwuwBKCUn7bEVWY1S9XEwNsGeroY6jrkTBAPBXAsw3BMyriMZgOoKyIn\nAEQBcPmWhuho4PffzW9NRkYCP/wALF5sfuNx1iwgMfBvtK/vfBCvUqJKgbgA5G/xR0gxbYkrpZzj\nrgubgwFEkbxTRKoBWCsiDUhm+1nciIiItO9t2rRBmzZtcsww9RfVK1YEFiwwvx1Yr55pnY+ZcBl4\neTuahebdF57K4m3BKy1e+Rer5Bk9avUAob9Sq1RhFhkZicjISKfSOhPEjwOonGG4Ysq4jFoCGAEA\nJA+KyGEAtQD8kTWzjEE8N6dPA2+/bX749okngCefNOMbNQLiKy1Hm9DbUaJYCafyKkiux4utSqn8\nlbWBO3To0KumdaY7ZSuA6iISJiIWAL0ALM+SZjeA9gAgImUB1ARw6F+VOotTp8wvf99+u/mF9Xvv\nBXad3YU9wRNRtfMK9G7S1ZXslVLqhpBnS5ykXUReALAG6bcY7haRvmYyZwEYBeATEYkCIADeIHnB\nlYKdPg20aQNUrQps3WrGdZj/Kn6L+Q2Xil1Cy0rvupK9UkrdEJzqEye5CsBNWcbNzPD9HIB73Vmw\n1JZ4qrNXzuL3mN8xsu1IvLP+HdQuXdudi1NKqQLpunti88IFYP160xIvm/LKhM3HNmPFvhVoHdYa\nTzZ+EuHB4fASZ3qClFLqxnbdBfHVq4H33wdiYoDQlBsZO8zvgMvJlzG63Wj4FfFDl5pdPFtIpZS6\nTlwXQXz+fMDhAM6cMT/ttHev+cm14inP5dQuXRtbjm9By8otPVtQpZS6zng8iDscwODBwPHjgI8P\n0LCh+Wni8PD0NJeSLmFa52m4teKtHiunUkpdjzwaxK1W4LbbgDJlTDCvUQPYsMH0hYeFmTRD1g/B\nnnN70KdBH3h7eXuyuEopdd3xaBBftcq0vtevN38BIDYWePppwL/KLkzdsh7v//w+ACDQN9CDJVVK\nqeuTR4P4118DjzwCFC2aPu60YxcONH0L0fZl+Gyl58qmlFIFgUfv09u+HWie5Snzp5Y9hZ6tGmHp\ng0sBAOX8y2HvC3s9UDqllLr+eawlnpxs7kKpWzd9XJItCdtPbcfGJzfCx8sHRX2Korx/edQsVdNT\nxVRKqeuax1riu3ebO1CKFUsZPrsbj337GCoFVkIR7yIQEZT3L5/2Iw5KKaWy81gQP3ECqJzh3Yhz\nt8/F4ujFqFayWtq48gEaxJVSKjceC+JWK2BJ+aUpkvhq11cIsASgWokMQVxb4koplSuPBfGDl6Lx\nS51m6LygMyKPRCLZnowH6jyA2iHpL7YKDw5HxcCKniqiUkpd94TMv1+RERGmLm/g7OUYd6Ibapaq\nidNxp9GuajvM7zEfPl4+KOJdBACQaEuEt3inDSulVGEkIiApOU3zWEvcZgPKx9+N6AHRaFSuEdpV\naYdiRYplCthFfYpqAFdKqVx47hZDuw1FUBw+Xj748bEfIZLjQUYppVQuPBfErTb4iFm8vhNFKaWu\njce6U5LtNniLx1+iqJRSBZrngrjNCh8vDeJKKeUKz90nbrfBx0svWiqllCs82BK3aUtcKaVc5Llb\nDO0axJVSylUe7k7RIK6UUq5wKoiLSEcR2SMi+0RkUA7TB4rIdhHZJiJ/iYhNRIJzy9PqsKGIBnGl\nlHJJnkFcRLwATAHQAUBdAL1FpFbGNCQ/JNmYZBMAgwFEkvwnt3ytdhuKeGsQV0opVzjTEr8FwH6S\nR0laASwC0C2X9L0BLMwrU5vDBh8N4kop5RJngngogGMZhmNSxmUjIsUAdASwNK9MbdoSV0opl7k7\nit4L4JfculIiIiIAADGbf0Jxa3U3L14ppQq+yMhIREZGOpU2z1fRikgLABEkO6YMvwmAJMfkkPZr\nAItJLrpKXmmvoq394ptoWCsIi54f7FRBlVKqsHL1VbRbAVQXkTARsQDoBWB5DgsJAnAHgGXOFMpO\nGyz6mlmllHJJnt0pJO0i8gKANTBBfy7J3SLS10zmrJSk3QGsJpngzIJtDu0TV0opVzkVRUmuAnBT\nlnEzswx/BuAzZxdspw0WHw3iSinlCs89du/QIK6UUq7yWBDXlrhSSrnOc0EcNliKaBBXSilXeCyI\nO2iDr7bElVLKJR7tTvHVlrhSSrnEg90pVu1OUUopF3muOwXanaKUUq7yaBAvatEnNpVSyhWeDeLa\nnaKUUi7xbHeKRYO4Ukq5wmNBnKItcaWUcpXngrg+7KOUUi7zXBD30sfulVLKVR7tTtFbDJVSyjUe\nC+IQ7U5RSilXeSSIkwC8rbDoj0IopZRLPBLE7XYAXvrLPkop5SoPB3F9YlMppVzhkSDucADwssHH\nS1viSinlCo+1xMVbg7hSSrnKo90pGsSVUso1GsSVUqoA82gQ9xZvTyxeKaVuGE4FcRHpKCJ7RGSf\niAy6Spo2IrJdRP4WkfW55We3AxS7tsSVUspFeUZREfECMAVAOwAnAGwVkWUk92RIEwRgKoC7SR4X\nkZDc8rTbAYgdXuK5B0aVUupG4EwUvQXAfpJHSVoBLALQLUuahwEsJXkcAEieyy1D051ih7eXdqco\npZQrnAnioQCOZRiOSRmXUU0AJUVkvYhsFZFHc8vQbgcAh7bElVLKRe7qlPYB0ARAWwDFAWwWkc0k\nD2RNGBERgfPnCfzlwMYNG3HnnXe6qQhKKXVjiIyMRGRkpFNphWTuCURaAIgg2TFl+E0AJDkmQ5pB\nAIqSHJoyPAfASpJLs+RFkti9x4E6i3zACMe/WC2llCqcRAQkJadpzvRnbAVQXUTCRMQCoBeA5VnS\nLAPQSkS8RcQPQHMAu6+WYbLNDlC7UpRSylV5dqeQtIvICwDWwAT9uSR3i0hfM5mzSO4RkdUAdgKw\nA5hFctfV8rTa7BDqRU2llHJVnt0pbl1YSnfK5j/i0XJZCBzD4vNt2UopVVC52p3idla7HeLBHxVS\nSqkbhWeCuHanKKWUW3gkiNvsDkCDuFJKuUy7U5RSqgDzWEtcoC1xpZRylQf7xLUlrpRSrvJgd4q2\nxJVSylWe607RC5tKKeUyz3Wn6IVNpZRymYda4tqdopRS7qB3pyilVAGm94krpVQB5rHuFC9tiSul\nlMs8E8Qd2p2ilFLu4MGWuHanKKWUq/TCplJKFWCea4nrL90rpZTLPNQnrveJK6WUO3isO0XvTlFK\nKdd5rCWu3SlKKeU6j0RSu0PvE1dKKXfw2H3iXqJBXCmlXOWZlrjenaKUUm7hVCQVkY4iskdE9onI\noBym3yEi/4jItpTPO7nlZ9PuFKWUcgufvBKIiBeAKQDaATgBYKuILCO5J0vSn0l2dWahdodDW+JK\nKeUGzkTSWwDsJ3mUpBXAIgDdckgnzi7U3J2iLXGllHKVM0E8FMCxDMMxKeOyulVEdojI9yJSJ7cM\n7XphUyml3CLP7hQn/QmgMsl4EekE4FsANXNKGBERgZ3rd+G87EFkZCTatGnjpiIopdSNITIyEpGR\nkU6lFZK5JxBpASCCZMeU4TcBkOSYXOY5DOBmkheyjCdJ9Hj3S+wvshR/v7fYqUIqpVRhJiIgmWOX\ntTPdKVsBVBeRMBGxAOgFYHmWBZTN8P0WmIPDBVyF3eGAt3anKKWUy/LsTiFpF5EXAKyBCfpzSe4W\nkb5mMmcB6Cki/QFYASQAeCi3PO362L1SSrmFU33iJFcBuCnLuJkZvk8FMNXZhdocdm2JK6WUG3ik\nOezQ7hSllHILzzx2T+1OUUopd/DQWwwd8PbSlrhSSrlKW+JKKVWAeex94toSV0op13nmwib1wqZS\nSrmDx7pTvL20O0UppVzloZa4dqcopZQ7eO7uFO1OUUopl3mwJa7dKUop5SoP9olrS1wppVzlsbtT\nfDSIK6WUy7Q7RSmlCjDP3SeuLXGllHKZ3ieulFIFmGda4rBrn7hSSrmBdqcopVQB5rELmz7anaKU\nUi7zXHeKt7bElVLKVXqfuFJKFWAeCeKE3p2ilFLu4LmWuHanKKWUyzzWJ+7trS1xpZRylVORVEQ6\nisgeEdknIoNySddMRKwicl9u+RF2FNE+caWUclmeQVxEvABMAdABQF0AvUWk1lXSjQawOq88HbCh\niI/Pvy+tUkqpTJxpid8CYD/JoyStABYB6JZDuhcBLAFwJq8MHWKFxbvIvyqoUkqp7JwJ4qEAjmUY\njkkZl0ZEKgDoTnI6AMkrQ4oVFh8N4kop5Sp39WlMBJCxr/yqgTwiIgJJ2//CGvqgvldptGnTxk1F\nUEqpG0NkZCQiIyOdSiskc08g0gJABMmOKcNvAiDJMRnSHEr9CiAEwBUAz5FcniUvkkSxZzpj+lPP\n44nbuji5SkopVXiJCEjm2Dh2piW+FUB1EQkDcBJALwC9MyYgWTXDwj4BsCJrAM/IIVb4aneKUkq5\nLM8gTtIuIi8AWAPThz6X5G4R6Wsmc1bWWfLMU/vElVLKLZzqEye5CsBNWcbNvErap/LMT1viSinl\nFp55d4qXFb5FNIgrpZSrPBfEtSWulFIu80wQF22JK6WUO3jmLVTaEldKKbfQPnGllCrAPNYSL6pB\nXCmlXJbvQZwE4K3dKUop5Q75HsTtdqT0iVvye9FKKXXDyfcg7nAA8LaiiL6KVimlXOaxlngRLw3i\nSinlKs8EcW2JK6WUW+R7ELfZCIgD3pL+G5vh4eEQkRviEx4ent9VqpQqxPL9hy4TrVbA4QOR9Ffj\nHj16FHm917ygyLheSin1X8v3lrgJ4tqVopRS7pDvQTzJaoVoEFdKKbfQIK6UUgVY/gdxm3anKKWU\nu3imJU4N4kop5Q4eaYkXtO6UixcvokePHvD390eVKlWwcOFCTxdJKaUAeOAWwySrFV4FrCU+YMAA\nFC1aFGfPnsW2bdvQpUsXNGrUCLVr1/Z00ZRShZxnWuIFKIjHx8fj66+/xvDhw1GsWDG0bNkS3bp1\nw7x58zxdNKWUyv8gnlzAgvi+fftQpEgRVKtWLW1cw4YNER0d7cFSKaWUkf/dKbZr605xx4OQ1/JQ\naFxcHAIDAzONCwwMxOXLl10vkFJKuciplriIdBSRPSKyT0QG5TC9q4hEich2EflDRNpeLa9rbYmT\nrn+uhb+/Py5dupRpXGxsLAICAq4tQ6WUcqM8g7iIeAGYAqADgLoAeotIrSzJ1pFsSLIxgCcBzLpa\nfkm25AJ1YbNmzZqw2Ww4ePBg2rioqCjUrVvXg6VSSinDmZb4LQD2kzxK0gpgEYBuGROQjM8w6A/g\n3NUyu2KLK1BB3M/PD/fddx/ee+89xMfH45dffsGKFSvw6KOPerpoSinlVBAPBXAsw3BMyrhMRKS7\niOwG8AOAl66W2fnEM/B2FP+35fSoqVOnIj4+HmXKlMEjjzyCGTNm6O2FSqnrgtsubJL8FsC3ItIK\nwDwAN+WUbtUX85F0LA4RERFo06YN2rRp464i/GdKlCiBb775xtPFUEoVEpGRkYiMjHQqreT1Hm8R\naQEggmTHlOE3AZDkmFzmOQjgFpLns4xnh+lPYPeW8jj68ciM42+o94nfKOuilLo+pMSVHO/Rc6Y7\nZSuA6iISJiIWAL0ALM+ygGoZvjcBgKwBPNWZxGPwtYc4W3allFK5yLM7haRdRF4AsAYm6M8luVtE\n+prJnAXgfhF5DEAygCsAHrpafmeTYhBkL+We0iulVCGXZ3eKWxcmQt/3/VB/z2JsXdAl4/gbpgvi\nRloXpdT1wdXuFLdKcsSjVDFtiSullDvkexAHgHKB2ieulFLu4JEgXiFYg7hSSrlDvgfxBjvWoWJI\ncH4vVimlbkj5HsTjdrZDyZL5vVSllLox5XsQP3YMKFXArmtOnToVzZo1Q9GiRfHUU095ujhKKZUm\n398nbrUWvCAeGhqKd999F6tXr0ZCQoKni6OUUmnyPYgDBS+Id+/eHQCwdetWHD9+3MOlUUqpdB65\nO6V0aU8sVSmlbjz53hK/dAnw8/v388lQ13+fjUP0SUql1I0l34P4tf6qmQZgpZTKziPdKUoppdxD\ng7gT7HY7EhMTYbfbYbPZkJSUBLvd7uliKaWUBnFnDB8+HH5+fhgzZgwWLFgAPz8/jBgxwtPFUkqp\n/H8VbU7Lu5Fe33ojrYtS6vpwXb2KVimllPtoEFdKqQJMg7hSShVgGsSVUqoA0yCulFIFmAZxpZQq\nwDzyFsOswsLCIOL6u1GuB2FhYZ4uglKqEHHqPnER6QhgIkzLfS7JMVmmPwxgUMrgZQD9Sf6VQz45\n3ieulFLq6ly6T1xEvABMAdABQF0AvUWkVpZkhwC0JtkQwHAAs10r8o0vMjLS00W4bmhdpNO6yEzr\nI2/O9InfAmA/yaMkrQAWAeiWMQHJ30jGpgz+BiDUvcW88ejGmU7rIp3WRWZaH3lzJoiHAjiWYTgG\nuQfpZwCsdKVQSimlnOPWC5sicieAJwG0cme+SimlcpbnhU0RaQEggmTHlOE3ATCHi5sNACwF0JHk\nwavkpVc1lVLqGlztwqYzLfGtAKqLSBiAkwB6AeidMYGIVIYJ4I9eLYDnVgillFLXJs8gTtIuIi8A\nWIP0Wwx3i0hfM5mzALwLoCSAaWJu+LaSvOW/LLhSSql8fp+4Ukop98q3x+5FpKOI7BGRfSIyKO85\nCjYRmSsip0VkZ4ZxJURkjYjsFZHVIhKUYdpgEdkvIrtF5G7PlPq/ISIVReQnEYkWkb9E5KWU8YWu\nPkTEV0R+F5HtKfUxMmV8oasLwDyHIiLbRGR5ynChrAeXkPzPPzAHiwMAwgAUAbADQK38WLanPjB3\n6DQCsDPDuDEA3kj5PgjA6JTvdQBsh+neCk+pK/H0OrixLsoBaJTy3R/AXgC1CnF9+KX89YZ5rqJl\nIa6LVwHMB7A8ZbhQ1oMrn/xqief5wNCNhuQvAC5mGd0NwGcp3z8D0D3le1cAi0jaSB4BsB+mzm4I\nJE+R3JHyPQ7AbgAVUXjrIz7lqy9MA+ciCmFdiEhFAJ0BzMkwutDVg6vyK4j/2weGblRlSJ4GTGAD\nUCZlfNb6OY4btH5EJBzmDOU3AGULY32kdCFsB3AKQCTJXSicdTEBwOsAMl6YK4z14BJ9Fa1nFaqr\nyiLiD2AJgJdTWuRZ179Q1AdJB8nGMGcjt4tIGxSyuhCRLgBOp5yh5Xbr8Q1dD+6QX0H8OIDKGYYr\npowrbE6LSFkAEJFyAM6kjD8OoFKGdDdc/YiID0wAn0dyWcroQlsfAEDyEoAfADRF4auLlgC6isgh\nAAsBtBWReQBOFbJ6cFl+BfG0B4ZExALzwNDyfFq2JwkytzKWA3gi5fvjAJZlGN9LRCwiUgVAdQBb\n8quQ+eRjALtITsowrtDVh4iEpN5xISLFANwFc8GuUNUFybdIViZZFSYe/ETyUQArUIjqwS3y6woq\ngI4wdyXsB/Cmp6/o5sP6fgHgBIAkAP8H806ZEgDWpdTDGgDBGdIPhrnivhvA3Z4uv5vroiUAO8xd\nSdsBbEvZHkoWtvoAUD9l/bcDiAIwMGV8oauLDOt3B9LvTim09XCtH33YRymlCjC9sKmUUgWYBnGl\nlCrANIgrpVQBpkFcKaUKMA3iSilVgGkQV0qpAkyDuFJKFWAaxJVSqgD7f3LWS+xdI6UNAAAAAElF\nTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7fc251f4ddd0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VMX6B/Dvm4RAgACh9xYQEJEiAsJFAihNBREsSLFx\nRRRF/F0FriLhSlexAAIBVHoRpJcgJVJEaaETeif0AIGEJLv7/f0x6dkkC7tkCbyf59knOXPmzJkz\ne/bd2TlNSEIppVT25OHuCiillLp7GsSVUiob0yCulFLZmAZxpZTKxjSIK6VUNqZBXCmlsrFMg7iI\nTBaRCyKyO4M8P4rIYRHZKSK1XFtFpZRS6XGkJ/4LgJbpzRSR1gD8SVYG0APAeBfVTSmlVCYyDeIk\nNwKIyCBLOwBT4/P+AyC/iBRzTfWUUkplxBVj4qUAnE42fTY+TSml1D2mBzaVUiob83JBGWcBlEk2\nXTo+LQ0R0Ru1KKXUXSAp9tId7YlL/MuexQC6AYCINABwjeSFDCqiLxIDBw50ex3ul5e2hbaFtkfG\nr4xk2hMXkZkAAgAUEpFTAAYC8DbxmEEkl4tIGxE5AuAWgLcyK1MppZRrZBrESb7uQJ5erqmOUkqp\nO6EHNt0kICDA3VW4b2hbJNG2SEnbI3OS2XiLS1cmwqxcn1JKPQhEBHTywKZSSqn7kAZxpZTKxjSI\nK6VUNqZBXCmlsjEN4koplY1pEFdKqWxMg7hSSmVjGsSVUiob0yCulFLZmAZxpZTKxjSIK6VUNqZB\nXCmlsjEN4koplY1pEFdKqWxMg7hSSmVjGsSVUiob0yCulFLZmENBXERaiUiYiBwSkb525hcQkd9F\nZJeI/C0ij7q+qkoppVLLNIiLiAeAMQBaAqgOoJOIVE2V7b8AQknWBPAGgB9dXVGV9cLCgEuX3F0L\npez76y/AZnN3LdzPkZ54PQCHSZ4kGQdgNoB2qfI8CmAtAJA8CKC8iBRxaU1VlhswAJgxw921UMq+\n9u2BXbvcXQv3cySIlwJwOtn0mfi05HYBeAkARKQegLIASruigsp9jhwBzp51dy2USstmAy5fBo4e\ndXdN3M/LReUMB/CDiOwAsAdAKACrvYyBgYGJ/wcEBCAgIMBFVVCOsNmAW7cAX9+ktMhIIE8ewCPZ\nVzppgni1avbLIc2HqIj+3kohKgqwWIB8+dxdk5RIMzRWtKiZvnABKFbMvXVyxtWrZl8+ciTtPBLY\nvRvw9AQeeyzr6+YKISEhCAkJcSwzyQxfABoAWJlsuh+AvpkscxxAXjvpVO41eTLZoEHKtHbtyCFD\nUqadP08CZJMm9ssZP97MVynVqEE+8YS7a5HWpk1kiRJkTIyZBsg5c9xbJ2fs22e24Z130s7bvZvM\nnZssVIhctCjr63YvxMdOu/HWkZ74VgCVRKQcgHAArwHolDyDiOQHEEUyTkT+DeBPkjcd+xrJXhYt\nAqpXB/z9gS+/BMLDAT8/oGFD4JFHzLxz54C1a4EuXYAVK4D589OW88QT5m+xYkDJkkCDBsD33wN7\n9yblad8eCA4GOnQAmjQBoqOBKVNMj3nLFiBHDuDFF4HffkvK/9xzQGws8PnnQESEKbt6dVN+uXLm\nYNDff5u65coFFC5s0v76Czh2LGndV64ABQua4ZQVK0wPLqHOq1YBQUH22+fKFWDgQFN+gwYmbcsW\n0ztt2BAYO9ZsR48eZsz95k2gQgVTXwCYPBnYvNls48CBpl4NGwKlSgGHDwMHDwLPP5/5+2SzAT/+\nCHzwgWmnJUvMe5eeBg2AmBjgzTdNHQ8dSpr3738D9esnTY8aZern6WnGZHPmBF54AZg3D9izx7Q3\nYHrlX3wBtGwJlChh9otWreyv/+BB4Ntvgf79gfLlgU8/BW7cAD77DKhUKfPtBYCVK837/fjj9ssP\nDwcWLADatjVpX34JbNgAfPUVUKCAY+tIMH262ScWLDDbWCrVAOvMmeYzIGK2qWLFlPMT3p9y5Ux9\n/f1N+qJF5r1K7sMPgZo1gcGDgRMnTHs//7xp/+Bgs3/Vq5eU/+RJ4Omngc6dTfutWgUMGgQUKmTm\nT5gAbN0KeHsD7dolfX4SvPQS0KZN0rTVCowbZ/YlkbRtQZr37pNPUv6adca33wJeXkDv3g5kTi+6\nM2UPuhWAgwAOA+gXn9YDwLtM6q0fBHAAwDwA+dMpJ0u+tSwW0mYz/yf/a7ORVqt52ctvsZBxcUn5\n4+JSviwWsmVLcuJEMjiYrFLF/F+3LunpaXq0cXFk795kzpzkxYtkq1Zknz4mX8IrKIgsUMD0JACy\nfn0yLIwsUiQpz4ABpswqVcjHHjP1WbPG5M+Xj5wwgXzpJZPno4/I7t3JLl1M3adNI5980pTzyCMm\nT/fupm41apjeeMJ6Hn+cLF6cXLw4ZR0nTiRXryZ9fJLqabWaMipWTEpL3VaBgabO9esntXPXrmSt\nWuTRo2TBgmZ9PXqQAQGmLXLnJiMjyXPnTLtMmGB+AQQFkeXLm+0jyf/+1ywbFZX2vUn9WrkyqbcZ\nFWV6od9+m3YbJ0406/P1Nfl79iRLlkya99lnZMOGSdsYG0vmyUP6+ZmeXlAQ+dxzpo0//ZT86SfT\nPqT5tVK1KlmhAtmiBVm2rNmH7O1zL79s1j9jBnnokNnOt94ybZdawnIJ4uLI27dN+a1apd1nSbJ/\nf7J2bbJRI9NTrVDB7CfPPksOH555eyZ8juLiyPBws397eprt+/DDlHmvXjXtM3Ys2bQpOW5c0jYn\n5Fmxwmyvpyf55ZdJ5TdpYto8of0/+sh85q5fN/tJUBBZrZp5n9q0MftEw4Yp1z9+vOmhx8WZ9mzT\nxuyXcXHkqVOmbkFB5IsvmvX37p20vpEjyTJlyOjopFiwe7epa3BwytiRsL5Ll8z8Awfsx6PU71dy\n9uLR/v3mc+Lrm7QcMuiJOxTEXfXKiiC+ezeZKxf5+eem8Ro3Jjt0IF94gaxenXzqKfMm3bpl8p84\nYYJimzZk/vykiNnB2rYlPTzMm5zwypePrFzZ7PgJHziSXL7cLF+unMlXsKBZp6+v+cCfO5e2nv/9\nL/n666acWrXMckOHJs23Wsmnnyb/+cd8UNq2NR/s0qXNTk6SR46QdeqYHW7JElOH8eNJb2+zDaT5\noL74ovmC8PQ0fxN+UpPkggXku++m357585vtAkwAKFvWfNDq1UsK5C1amHbz9DTbvHOn+XKoUcPs\nhFWqmOU8PcmBA8lvvjEfyM2bzTrq1TPb5uFBfvKJSRszxnwp5slj2jMyknzmGfPeJX9P0nt5eZkA\n6O1tptu2zXi/+c9/zJegjw/5/fdJ6XFxZp1t25ptLF7cbM/QoeSgQSbP3r1mG+LiTNt6e5MjRphA\nFxJi6l2xohlmWbgw7T7n6UmWKmXWX7u2adOOHckrV8yX2oULKevarZtZ/tQpctkys62enmSzZqS/\nf8p2yJPHBIWXXyanTjWfAYBs3dqUtWMHmTdvxm0pYj5PQUFJ73OHDqauBw+aL7PUy7z9til/+HDy\n//7PdGiS50t4f8qXN188b75pyvf1NdudIDrabFPx4uazS5Iff2z2px49TJs/9ljKuvr5mS+GBHv3\nmvZKyNOvn0k/fNi8J7dvp2zf1q2T6rhkCTlpknl/vLzM5+fqVXL+fLMuDw+yUiXTplOm2N+3unc3\n23X8eMr06Giz/fXrJ32JkeQHH5hOnL+/GTYiH7Ig3r27+fZv0IAcNsw0PGD+enmZBm/TxgSu0aNN\nb/btt82O/OGHJsi0a2d2muTBjkx6s/z87I/FpfbZZyboZmTtWlNm+/bp5xkzJqnXMmuW/TybNpmd\nwd+f/OuvzOvmqDp1zLoPHzaB6LnnkuaVLZtUr/DwlMvZbOYXSp8+JpAk9Grs6dXLBMbkO/KWLabs\nZ54x79HYsfYDWlYYOtR8WE+eNL9wunXLOH+FCubLYNeulOkJPd9+/VLucwkGDDCBHyC//tqkvfOO\nOV5x7Zrp5X/7rflSe+stE0jr1El/n0gos00bEyy2bDFtDNzZuP3CheTzz5Pvv0/+8IPjy5HkvHmm\nM9KlS1JgT+7cObN/+PiY97dy5bR5rFbz2evd20zPnGm2YcCAtHkXLTLzJky4s3raM2eO+aJq2pT8\n8UeT1rmz+cLp1s302o8fN+sTMfvq6NEpX999Z7br7bdNZyr5vPffN/tD1armS3L0aLMePz/yzBmy\nUyfzPo8e7fyYeLZBmvG04GCgVi0zJrx0KXDmjDn7IuFofLFiwE8/mYtZypQB+vY1Y2ANGpgxzkGD\nzHiht3fK8itVMkfDIyKSjvJn5P/+L+VYqj0JY4kZjXu+8Qbg42Ne6Y2pFixoxtN9fZPGol2hUiVg\nxw6gdGlg4sSUZzQULQrcvg189x1QvHjK5USAMWOAadOA4cPN+F563nsPePnllOONtWqZceGmTc0Y\n6EsvmbFiR9rd1Xr2NNtftqwZL89s3POLL4Dr19OOTb/8stkntmwxY7IJ+1yCggXNuHy9ekCn+KNO\nH3xgxrCvXgX++ceMDY8fDzRqBIwcCVStatomPR99BAwdavI99php4z//NPuSoxL2+9hYc8zlTlSq\nBKxfDzRrZo53pFaihBm3rlrVnC5YtmzaPB4ewKRJSe99ixZmu9qlvloFwJNPmr+px+jvRvv25hjH\ntWtJ6xo0CHjnHdOGISFmTL9IEXPco0ABE1NSGzcOCAgwn4Pk80WAb74x5c+da/4C5n0tVQp4/31g\n9mz7ZaaQXnS/Fy/cw574yZPmm65YMdPbqFHDDBXcqYsXTQ/pzJm083r1ShpCGDXK+TqT5M2bruk5\nXLhgynnySdfUK0H//uZnsD2tW5thqnvNZjM/mSdNuvfrutcSesb2TJli3sPx41OmN25shmgOHbr3\n9bMnKsoMUZYrZ4ZP7kRkpNmmkyfvSdXsKl/eDKHcK0eOmBhx44aZbtuWnD793q2PfEh64mPGAAsX\nmrMERMwZDnny3Hk5RYoA58/bX9bf3/QKbDbX9Qjz5AHy5086On+3/PzMX1f0QJKrVCn9MosWNb3H\ne82Z9/N+M3Cg6W3bk9CWqfetZcvMrz97vdSs4ONj6nbypPk1dCfy5k060ymr7NiR9Hm4F/z9U8aI\nadOA3Lnv3foy88AE8QULzClICRenOPOBT2/ZgABz6tzUqa79Wf/OO2b4wBk5cpihFFcH8caNzQ5r\nT8uWSadt3Wt582bNeu41T8/0P/DpBXFf35QXZ7lDly5mP0g9xOiIrAzgwL0N4AmSxwh3X9glpqee\nRSsT4b1YX1yc2cmvXzfjp/dSQm8kNNT5wOtq5cub86/793d3TdTdCAsznZCDB801B0olEBGQtHOW\n+gNyP/FTp8wBknsdwIGknqc7DrBlpmBB1/fEVdZJryeuVEYeiCB+5IjjV7U5K08ecwS8cOGsWd+d\nqFUr6WpBlf34+Zl9K39+d9dEZScPxHDK2LHm9Lpx41xetFIPDavNCg/xgNi7tly51QM/nLJnD/Co\nPktIOclqs2Lz6c24GftA3vYnU31X90XBkQVhtdm9Aam6Tz0QQXzLlqST/FXGImMiceDSAafKOBZx\nDJejLrukPqHhoTh69ShOXDvhkvLu1OErhxEeGY6jV4/irUVvod3sdmg5vSUm75iM8zfTOS0nA2dv\nnMXRq9nzJtcR0RG4dvsatp7b6u6qqDuQ7YN4dLQ5qp/emSI3Y29i+u7pWHJwCSKiI9Itx0YbBq8f\njOWHlwMAYq2x+Dn0Z2TlcFNG9l7ci61nnf9wjds2Du3ntE+xXRabBRO2TUCsNTZF3g0nN+BYxLHU\nReCNhW9g+MbhidNbz27F/kv776o+dYLqoNLoSuj8e+e7Wv5OXI66jPn752PU5lHot7of9lzYgzcX\nvYkW01ug8++dEWuNxf4P9uPZis9i1t5Z+CT4E/x1+i/subDH4XVUGVMFTX5tAsC065SdU+6bfSgz\nl6IuIadnTrvvuUpfyIkQHLlq58bmWSTbB/HgYKBuXXNbVRttCAwJxMVbF3Eu8hxen/86Gv/SGF0X\ndMXLv72Mn7b+BMBcpTp4/WCcvZH02JqDlw9i9JbReGPhG9hzYQ++XPcl3ln8Dv46/RcOXTmEKTun\n2F1/dFw0/rPqPxl+QbjChG0TMGnHJLvzvtv8HU5fNw9f2np2KzrO7Zhub3D1sdU4FnEMq46uwo//\n/IjNpzfj8zWf4+Pgj9FnZZ/EfCTx9uK3MTBkYIrlD105hC1nt2DN8TWJae8vfx9vLXoLr857FV0X\ndMXV6Ktp1jt843AcvXoUX6z9InH+1eiryOGRAz2e6AGLzYLX57+OjnM74uS1k4nLXYm6gi6/d8Gs\nPbMcbKmUdZ2wbULi9K87f0XH3zpi9t7ZsNGGZ6Y9g+MRx1G7eG0cv3YcU9tPReHchREYEIi5L8/F\n8sPL0ejnRvhk1SeYu28uOs3vlKJu3//9PS7cvIAzN86g3+p+OHX9FG7F3UKRPOZJGXsv7sWbi97E\n1399fcd1P3j5IMZsGXPHy2XEYrOg/+r+OHPjjN354TfD0ahsIw3id6jNjDaoPLoyLDaLW9afbYP4\n//4HvPKKuRfFe++ZtAnbJmDQn4Pw277f0HFuRxTNUxSDAgbh4/of45FCj2DKLhOI5+2fhwHrBmD1\nsdUAgBm7Z6D7ku5oUq4J+jTogx//+REz9szAO7XfwaTQSfht32/ovbI3Gk5uiDhrXIp69F/THzP3\nzETvlY7c+Det/wv+P8zZOwcAsP3cdtSZUAdTd01Nk297+HaE3wxPk37p1iX0Xd038SfwkkNLMP/A\nfKw4siJFPhtt6LGkBzae2oip7afilXmvYNjGYWg9ozVm75uNvT334o9jf6D+pPqIiovCwrCFAIDF\nBxfjVuytxHKWH16OLjW64HjEcYRHhmPd8XU4f/M8Dl85jCqFquBq9FU8N/M5PBH0BELDQwEAR68e\nxZfrvkTtCbUxZMMQ/H3mbwBmKOWpMk/h04afYsvZLdh9YTdirDFYELYgcX3vLXsPq4+txtz9c2Gj\nDe8ueTfx15I9ty230WFuB/RY0gM9l/XE/9b/L7EnvP7kegxrPgzBXYIx8tmR+P2V37H2jbWY+MJE\nbHhrA7w9k65kKehTEGvfWIs5Hedg27lt6LW8Fwr7FEaXBV0AALdib+GzPz5D29ltUWdCHUzbPQ2P\n/fQY3qj5Bq7fvg4ACLschkZlGuG7v7/DjvAdiWV3mt8Ja46tQUbm7Z+HD1d8mLhvOOt4xHE8OvZR\n/LrrV/RY2sNunvDIcDQq0wjHI47jk+BPcPjKYbv5fg79GQPWDgBgvoj/9fO/UGt8rcRt/PPEn6g5\nviaWHlrqkrqnp93sdui+uDvqTKiD8Mi0n4309P2jL8Iup7whyS+hv+D7v78HYN7bbgu6ORyUS/qW\nRA6PHCne4yyV3vX49+IFF907Zc8ec3/oOXPMfbDNvZltrDK6Ct9c+CZ9Bvuw7ay2tNrMjXrjrHG8\nGXOTPoN9GBkTyU7zOrHIyCIcFDKIq4+uZuGRhekxyIPDNgzjuRvniEAQgeCFmxdYYHgBNp/SnEW/\nLkoEgrvO76LNZmOMJYbnbpyj33A/7ji3gwWGF2DwkWA2/rkxj1w5wsiYSJLk2Rtnuf7EeuYdmpfe\nX3nT+ytv5huWj2uPrWW1MdWIQLDj3I4cun4oc36Vk/3+6MeKP1Tk8YjjjLHE8NjVY6w1vhYRCNYN\nqkuL1cIYSwyj46IZHRfNrzd9TQSCY/4ZQ5J8ee7LbPJLE7618C2S5KVbl3jq2in+Gvornwx6kscj\njpMkT147yYjoiMS/JHn99nXWm1iPCw8sZJGRRbjx5EY+Pu5xbju7jSQZY4lhi2ktOGfvHL698G0O\n3zCc/j/4c+nBpbx++zpJcvPpzawyugp//PtHen/lzRbTWjD3kNz8Ys0XPHT5ELst6MaxW8byeMRx\n5h6Sm/1X92esJZYegzz4wbIPOHvPbLaY1oLBR4JZdUxV+g3346ojq9hgUgNO3D6Rj/30GPMOzcun\nf3mahUcWZs6vcvKbTd/wRMQJnog4wXFbx7HgiIIsPLIwEQhKoHDvhb1sO6stfQb78OLNi3e0r9ls\nNtYeX5sLDyykxWph2e/KctWRVZyxewbLjCpD/x/8uf3cdt6Ou82wS2G8HXeb3l95MzImkgPXDeQX\na77gsA3D+M6ipNteJuxfXX7vkpg2Z+8c+gz2Yc+lPdlmRhu+MPMF9v2jLwsML8DouOg7/YikMWvP\nLLac1pL7Lu5jhe8rpJlvtVmZ4385uPzQcj4x4Ql6DvJkjyU9ePbG2RT5WkxrwSIji7DqmKos+11Z\nfrLyE744+0V+ufZLdp7fmSQ5fMNwNpvSjEVGFmHOr3Lyj6N/3HF9T0ScYNnvyrJuUF3W+KlG4n6b\nwGK1EIFg2e/K8pmpzxCB4H+C/2O3rBhL0u1IrTYr8wzJw7cXvp2YfjziOP2G+7HA8AL0G+7HehPr\nEYFgxR8qMvhIMC/cvMA6E+okfqaTi7PG0fsrb/ZY0oP9V/fnD3//wIBfA3j06lHejLmZ6XZO2j6J\n1cZUS7NtDSY1YPCR4MQ0PGj3Thk7Fnj3XdMTT7AjPBRWWjG46WCcv3keU1+cCg8xPzS8PLzg5e2F\nyoUq44+jf2DN8TXoXqc7hm0chtw5cuOXdr9gzbE1aOnfEiV8S2BUi1E4ce0EiuYpiucqP4cZe2bg\nYK+DCAwJxI7wHdh5fifeWPgG8uXMh66Pd0XtErVROl9pvLf0PRTIVQDNpjYDSXzx9Bf4YPkH8PLw\nwvDmw/FeXfOTYdnhZfj0j09xNOIoZnWYhaDtQfjhnx8Q2iMUVQtXRdiVMDwR9ATqlKiDDSc3oF3V\ndrh++zrORZ7Dq/Nexc7zO3Hh1gXk9c6La7evoYV/C5yLPAcAOHD5AD6s9yFGbR6Fjac2ovWM1sjh\nkQPRlmj89vJvKF+gPACgbH5zI44CuZIe6ZIvZz608m+FPsF9UK9UPTQq2wjVCldD2OUwPFHyCby5\n8E0cvHwQzSo0Q0nfkug0vxNuxd5Cm8ptEk9La1C6AQ58cAAigm41u+G1+a9hRecVaFy2MUQEjxZ+\nFDvP78SNmBt4seqLGNJsCEQEZfOXRZ0SdfBMxWcwMGQg3lv6HpqWb4ryBcrDv6A/wiPDMX7beHzz\n7DdoWqEp3lr0FnrW7Ym6Jeuiw9wO+HHLjwAAD/HArA6z0LhsY7wy7xUUyV0EL8x6AeULlEdE3wjk\n9LqzK8JEBNvf3Z64fZ83/hzdl3QHAPT7Vz/0rNszcV6VwlUAmOMpvsN8UbdkXXxc/2M0r9gcNcbV\nQK/zvRLbO4dHDvxx9I/E9YzaPAr1S9fHuG3j4JfLDxG3I/Bti2+x4sgK7LmwB0+WehKnr5/GwSsH\nAQB+ufzwRMknMqz71eirOHDpABqWaYiwy2F4suSTKJG3hN3hrstRl5EvZz7UKl4L28O3I5dXLmw4\ntQGPjn0UA5sMRJ+n+mDn+Z04cOkAznxyBl4eXvhp60/4/u/vMbPDTFT0q4jy35cHSZy+cRrtqrRD\nt8e74c1Fb6Y7PLMjfAeK5TG3xSyVL+kqtZ3nd6L74u74sN6HOH39NNYcX4OfQ3/G/5r+LzHP2ciz\nKOlbEid6n0DQ9iCsPrYaG05tSLMOq82K6j9Vx7T209CgdAMcvnIYPjl8sOn0JjSd0hSDAgZh7r65\n6Pp4V0TFRaFyocrou7ovqhSqgrzeeTF843DUKFoDO8J3YMTGEWhXtR3qlqybWP6ZG2dQNE9RdHqs\nE95Y+AZ8c/qiepHqCPg1AF4eXhj33Dh4eniiQekGyOudN03d+gT3QWRsJK7dvpa4b6w+thqnrp/C\nO4vfwYrOKzI/wJ5edL8XL9xlT3zfPvOwh2++IQcPNvfnPZuyg8ARG0ew17JeGZbTYU4HIhDs+ntX\n/nH0DyIQnLdvXobLXIm6wncWvUOrzcpvNn3DFtNasPX01ok9sgQTtk1gx7kdE7+tP1/zOREITto+\niR8s+yCxt0uSF25eYM6vcjLfsHzcf3E/JVDYYFLKB1/+c+YfIhB8f+n7JE1vAoFghe8r8JOVn3Do\n+qEMXBfI3it6M2hbEFtNb8Xd53cz1+BcvBp1lc/PfJ4SKOyzsg8v3brE95e+zzhrBjf1jrf3wl62\nmNaCm0+bJzYk9CbPR55ngeEFEnvccdY45huWj82nNM+0zOTm7p2b2BOdvGNyYvqQ9UN48pr9W91F\nxUZRAoVFRhZJ/HXlqBu3b/Dfi//NCzez7kbkQ9YP4cB1A9liWovEHuTsPbPpO9SXCASLfV2M0XHR\n9Bnsw+i4aO4+v5ulvi3FrWe3EoHg5tOb+eHyD2m1WfnWwrc4bqt5NM6zU59l3aC6bD6lOQsML8DQ\n8FCuPbaWtuQ3Yk+mzYw2zD8sP7/e9DVf+e0VTt81nVablZ6DPBP3hRhLDNcdX8fFYYv5r5//RZKc\nunMqf9//O0nTSy32dTGuO76OHyz7gAPXDUx3u4t+XZTnbpxj21ltE5f/bNVnHLp+aJq88/bNY4Hh\nBVhmVBl6DPLgzvCdJMmlB5eyyMgi/HTVp4nbtf3cdj4y+pEUy687vi6xvuGR4Wwzow2fmJB0k/QT\nESc4dstYfrrq08RfPWO3jGWPJT3YYU4HWm1W9l7Rm82nNGer6a145MoRkuaXV/FvijNoWxBvxd7i\ny3NfZotpLfhL6C98ZuozzDU4F0OOh/Bq1FWS5Oqjq9n458Z22+PrTV+z+ZTmrDOhDhv/3Jghx0NS\nzN9yZgurj63OZ6c+y4+Wf8SxW8Zy7JaxfHTso5y+azrrT6yf+BlDdn8oxGuvmSfBNGhgbo06c2bK\n+TabjU1/bZq446TnhZkvEIGmDkeuHKEECq9EXclwmeSOXj3K9rPbE4Fg2KWwDPNarBZ+v/l7uz+F\nrTYrvb/yZpXRVRgVG0UEgl+u/TLN8vmH5ef8/fMT0xAIvjbvtTTlLT24lAgE60yow3LflUtMn7pz\nKk9fP+3w9tkza88sPj/zebaZ0Yafrfosxby2s9ry01Wf3lF5m09vJgLBkRtHJn4QHFFgeAG2nt76\njtZ1v5nADY7YAAAbOklEQVS8YzLLjCrDpyaZR9TUHFeTG05u4HtL3uOAtQNotVk56q9RKYLy6H9G\n84kJTzA0PJR5h+ZN7AwErgtk5R8rE4Hgwcvm/rBrj61laHgoVx5eyd/2/Ua/4X48cOkAi31djAVH\nFOT2c9tJkoVGFEocVvo19FciEKz0Y6UUX6rJBR8JZvFvitNvuF+6X7QkWX9ifW48uZG1x9fm1rNb\nSZpA9snKTxLzxFpiGbgukIVHFubWs1tZZXQV5h+Wn40mN+JHyz9i0a+LctOpTSnKtdqsLDyycIp9\n+ecdP7PbgqSnc0RERzDPkDyJX/IvzHyBz898nj2X9uTAdQMTA3nPpT255tiajN4mztw9k+du2Hkc\nF8l6E+sx1+Bc/GnLT5y7dy5rjqvJrzd9nWF5cdY4Bq4LZJGRRfjBsg/Ye0XvxC+Qj5Z/xNVHV7Pn\n0p6Jr+83f0+bzcaNJzfyzxN/kszGwymjRpmbwV++bB4q8N139h94MHHHRFy4dQEtK7XMsLwxbcZg\ncLPBAICKfhWx7PVlKOjj+C3WKvpVxPxX5mPlkZV4pFDGdyjy9PBE7wb2D3Z6iAdK5yuNEr4l4JPD\nB6V8S6F5xeZplp//ynw0KtsoRfpTpZ9KU14J3xIAzM/Tlv5JbdC1ZleHtisjLfxb4LM/PkMFvwqJ\nbZdgaLOhyON9Z7eLrFuyLlZ0XoFWldJ5ukU6SuQtgTol6tzRMvebt2u/jTM3zuDQFfMU5p51e6LT\n/E4gie3vboeHeKDPU31SLPNq9Vdx5sYZPP3L03i0yKOJP7n7PNUHhXMXxpRdU7D93HZULlgZPZf1\nxNXoq7DSiojoCIx4ZgSqFq6K4C7B2HR6Ex4vZp5SUdCnIK5GX0WRPEUwKXQShjUfBr9cfuhcw/5p\nni38W+CXdr8gxhKTOAxnT0W/ijh+7TjO3DiDMvnKAAAK5y6MPRf3wGqzotvCbjh05RDy5cyH+a/M\nR92SdTG742z4evti+eHlsNKKWR1moWGZhinK9RAPNKvQDC/NeSnxzJ+jV4+i02NJz2svkKuAGQ6c\n3gqvVH8FG05twOk+p5HXOy8sNgsalmmIFv4tHHqfOtXolO68OsXrYMvZLZi4YyLCb4ZjaLOheKPW\nGxmW5+XhhYEBA/HcI89h46mNienlC5RHuyrtUMGvQprPP4A0n/10pRfdmbIH3QpAGIBDAPramV8I\nwAoAOwHsAfBmOuVk+I2V2tNPm2c15stnnkdnz+Erh1l4ZOFMe8b3mya/NGGneZ1IkmGXwtL9SZzc\nocuHaLGmfeLq+cjziUMUH6/42OV1PX39NK9FX3N5uXei9fTWXBy22K11cIUbt28kHiy02Wz888Sf\nPBFxItPl/jr1Fw9dTvtUiCHrh/A/wf/hnyf+ZLUx1bjlzBbuv7if+y7uS3efajCpATed2sT9F/ez\n+DfFGWuJdW6j4vX7ox8RiBQ94iUHl7DNjDbccmYLK/1YicsOLXPogF9qp6+f5tKDS1O8Lt+6nCJP\naHgoB6wdwFyDc7Hj3I4u2abUfg39lWVGlSECwdH/jL4n67AHzvTERcQDwBgAzQGcA7BVRBaRTH6O\nTi8AO0m2FpHCAA6KyHSSd33ipNVqbu6+cSOwdq05Dzy125bb+G7zd3iz5puJB5WyizL5y6BobnO7\nOkfrXrlQZbvpxfIWw41+N/DYuMdQtXBVl9UxQel8pV1e5p2a+/Jc5MmR/Z8K4ZvTF745zc3BRQRP\nl3vaoeWeKpP2Fxhgfpn1WNoDRyOOonud7niyVOaXLhf0KYgrUVfwwz8/4J3a7yCHZw7HNyADjxZ5\nFMXzFseOd3cknlRQOHdhXLp1CQvCFqB1pdZoU7nNXZVdOl/pTPfDWsVroZRvKXy1/is0r5C2Z+sK\nXR7vgucfeR7NpzZP95dLVnNkOKUegMMkTwKAiMwG0A6mZ57gPIAa8f/7ArjiTAAHzP1QSpQwzxSs\nWTPt/IOXD2LKrilYengp1nZb68yq3KJp+abIn9N1t6vzzemLjtU6Ov4TLJtJfWRfGQHlA/D8I89j\nw6kN6Fazm0PLFPQpiOGbhiM6Lhq/tvvVZXXpWrNrmiG8wrkLY+u5rTh+7TjmvTzPZetKT5E8RdDl\n8S53/WWRGU8PTxTKXQg739t5T8q/G5nexVBEOgBoSfLd+OkuAOqR/ChZHg8AawBUAZAXwKskV9gp\ni5mtL8HHH5vHQg0blnYeSRT/tjg8xANjWo9Bh0c7OFSmUgrovaI3pu+Zjm3/3oYKfhXu6bqu3b4G\nvxF+CHkjBE3KN7mn63qQZXQXQ1cd2OwPYBfJpiLiD+APEXmcZJrbwQUGBib+HxAQgICAALsFzp5t\nhlLsORt5FhdvXQQAVCtSzcmqK/Vw6VazGzo/3vmeB3AAyJ8zP35q85PDw0bKCAkJQUhIiEN5HemJ\nNwAQSLJV/HQ/mEH2EcnyLAcwhOSm+Ok1MAdAt6Uqy6Ge+PXrQMmSwM2b5iG5qS0KW4T2c9rDQzxw\n67+37vgCDqWUyk6cvZ/4VgCVRKSciHgDeA3A4lR5DgB4Jn5lxQA8AuCu76Jz9Kh5Uo+9AB52OQw9\nl/VE2yptUa1INQ3gSqmHWqbDKSStItILwCqYoD+Z5AER6WFmMwjAMAC/iMguAALgM5Jpr+11UEaP\nW/tp60/oXKMzhjYf6ra7himl1P3CoTFxkithDlomT5uQ7P/LAF5wpiJxcea2srlyAYcPpwzi4ZHh\nIIibsTcxb/88rH9rPXJ45nDZqVFKKZVd3TdXbI4bZ25sFRkJkMCPPybN676ke+LtRwv5FIK/n7+b\naqmUUveX++J+4lOnAl99BUycCAwaZNLatTN/T18/jb/P/I3xz41HQZ+CqFOijj7IVSml4rm1Jx4T\nY67M/PRTYMoU4OmngUaNgNatAe/4+/P/svMXvFb9NfSo2wPbzm1LvHeCUkopB04xdOnKUp1iWK4c\ncOMG8PjjwJ9/JuXrtbwXCvkUwkf1P8Lj4x/H0k5LUbtEbVy7fQ2e4pl42bJSSj0MsuJin7ty6pT5\n+3Sq6wAmh07GbcttbD6zGZ1rdEbtErUBpHyAgVJKKTcH8fLlgRMngHr1UqYXzVMURfMURQnfEhja\nfKg7qqaUUtmCW4N46dJpg3hUXBQu3rqIYx8dg6eHp9vqppRS2YFbz06Jjga2bAGKFUtKO3DpAPz9\n/DWAK6WUA9waxG/eBHxTHaOct39eiqfTKKWUSp9bh1Nu3gTWXJiN9/8JwvWY6yiRtwRCToRg27vb\nMl9YKaWUe3vikbE38MXm95E/V35ULlgZFpsFZz85e0+eTqOUUg8it/XESSCy3Gy0LReABa/+7q5q\nKKVUtua2nnhMDCBl/sZzj7R2VxWUUirbc1sQv3kT8PKJ0qsvlVLKCW4N4p65ouDj5eOuKiilVLbn\n1iDukTMauXPkdlcVlFIq23NrEBfvKPjk0J64UkrdLbcGcXhpT1wppZzhtiAeHQ3QS8fElVLKGQ4F\ncRFpJSJhInJIRPramf8fEQkVkR0iskdELCKS4X1jY2IAm2eU9sSVUsoJmQZxEfEAMAZASwDVAXQS\nkRSXVJL8hmRtknUA9AcQQvJaRuXGxAA2Dx1OUUopZzjSE68H4DDJkyTjAMwG0C6D/J0AzMqs0JgY\nwOqhBzaVUsoZjgTxUgBOJ5s+E5+Whoj4AGgFYH5mhd6+TVgkWsfElVLKCa6+d8oLADZmNJQSGBgI\nANi02QKPEp5633CllEolJCQEISEhDuXN9EHJItIAQCDJVvHT/QCQ5Ag7eX8HMJfk7HTKSnxQ8pfD\nrmJkjD9uB0Y4VFGllHpYZfSgZEeGU7YCqCQi5UTEG8BrABbbWUl+AE0ALHKkUrdio+ENPaiplFLO\nyHQ4haRVRHoBWAUT9CeTPCAiPcxsBsVnfRFAMMloR1Z8KzYKObx1PFwppZzh0Jg4yZUAqqRKm5Bq\negqAKY6uOCo2Gt45tSeulFLOcNsVm7dio5DTU3viSinlDPdddm+JQk4P7YkrpZQz3BbEb1tikNMz\np7tWr5RSDwT3PZ7NEgtvDeJKKeUUtwXxWEssvD293bV6pZR6ILivJ26NRU4vDeJKKeUMt/bENYgr\npZRz3BfEbbHIpUFcKaWc4rYgHmeNRc4cGsSVUsoZ7gvitljk0iCulFJOcV8QpwZxpZRyllt74j7e\nOdy1eqWUeiC4LYhbGItc3toTV0opZ7g1iOfWIK6UUk5xWxC3SZyOiSullJPcFsQperGPUko5y31B\n3EPPTlFKKWe5JYiTJohrT1wppZzjliBuswHw1J64Uko5y6EgLiKtRCRMRA6JSN908gSISKiI7BWR\ndRmVZ7UC4qW3olVKKWdl+qBkEfEAMAZAcwDnAGwVkUUkw5LlyQ9gLIAWJM+KSOGMytQgrpRSruFI\nT7wegMMkT5KMAzAbQLtUeV4HMJ/kWQAgeTmjAi0WABrElVLKaY4E8VIATiebPhOfltwjAAqKyDoR\n2SoiXTMq0GoFxFODuFJKOSvT4ZQ7KKcOgGYA8gDYLCKbSR5JnTEwMBBRUYAt9Cj2btmLgPIBLqqC\nUko9GEJCQhASEuJQXiGZcQaRBgACSbaKn+4HgCRHJMvTF0AukoPipycBWEFyfqqySBIXLwKlBtXF\n5s/Ho27JunewaUop9fAREZAUe/McGU7ZCqCSiJQTEW8ArwFYnCrPIgD/EhFPEckNoD6AA+kVaLEA\n0OEUpZRyWqbDKSStItILwCqYoD+Z5AER6WFmM4hkmIgEA9gNwAogiOT+9Mq0WgF4xiKHh96KViml\nnOHQmDjJlQCqpEqbkGr6GwDfOFKe1QpQe+JKKeU0t1yxabUC8IjTIK6UUk5ySxC3WAB4aE9cKaWc\n5baeuA6nKKWU89w6nOLl4arT1JVS6uHktuEUikWDuFJKOcl9wylihaeHpztWr5RSDwz3DaeIFZ6i\nQVwppZzhpuEUAkJ4iNueDqeUUg8Et0TRmDgrQA+I2L0VgFJKKQe5JYjHWa0Q6lCKUko5yz1B3GKF\nUM9MUUopZ7kliMdaLBBoT1wppZzlxp64BnGllHKW+8bEtSeulFJO0564UkplY27riXtoT1wppZzm\nvp64BnGllHKaG3vieoqhUko5y01BXE8xVEopV3AoiItIKxEJE5FDItLXzvwmInJNRHbEv77IqDwd\nE1dKKdfIdExDRDwAjAHQHMA5AFtFZBHJsFRZ15Ns68hKdUxcKaVcw5GeeD0Ah0meJBkHYDaAdnby\nOXw3K4v2xJVSyiUcCeKlAJxONn0mPi21p0Rkp4gsE5FHMyrQYtMgrpRSruCqU0S2AyhLMkpEWgNY\nCOARexkDAwPx51/nEH37IkJCQhAQEOCiKiil1IMhJCQEISEhDuUVkhlnEGkAIJBkq/jpfgBIckQG\nyxwH8ATJq6nSSRK9v/4Hc258iPNfbXGokkop9TATEZC0O2TtyHDKVgCVRKSciHgDeA3A4lQrKJbs\n/3owXw5XkQ6L1QoPfTSbUko5LdPhFJJWEekFYBVM0J9M8oCI9DCzGQSgo4j0BBAHIBrAqxmVqWPi\nSinlGg6NiZNcCaBKqrQJyf4fC2CsoyvVnrhSSrmGex6UbNMn3SullCu4J4hrT1wppVzCLUHcarPC\nU/QGWEop5Sz33ADLZtGeuFJKuYCOiSulVDbmxuEUDeJKKeUsDeJKKZWNuW04RcfElVLKee7riXto\nEFdKKWe5LYh76SmGSinlNDcNp1i0J66UUi7gnp449cCmUkq5gvuCuPbElVLKae4bE9cgrpRSTtOz\nU5RSKhvT4RSllMrG3BPEYUEODz3FUCmlnOWWIG7TnrhSSrmEHthUSqlszKEgLiKtRCRMRA6JSN8M\n8j0pInEi8lJG5WlPXCmlXCPTIC4iHgDGAGgJoDqATiJSNZ18wwEEZ1amFVbk8NQgrpRSznKkJ14P\nwGGSJ0nGAZgNoJ2dfB8CmAfgYmYFak9cKaVcw5EgXgrA6WTTZ+LTEolISQAvkhwHQDIr0EYrcnjq\n2SlKKeUsV0XS7wEkHytPN5AHBgbi+s712H4rD0JKNUBAQICLqqCUUg+GkJAQhISEOJRXSGacQaQB\ngECSreKn+wEgyRHJ8hxL+BdAYQC3ALxLcnGqskgSxbr1wesvlMF3L3/i4CYppdTDS0RA0m7n2JGe\n+FYAlUSkHIBwAK8B6JQ8A8mKyVb2C4AlqQN4clZakUPHxJVSymmZBnGSVhHpBWAVzBj6ZJIHRKSH\nmc2g1ItkVqYNVnjp2SlKKeU0h8bESa4EUCVV2oR08r6daXl6iqFSSrmEey671564Ukq5hNvunaJB\nXCmlnOeeIC6xyOWV0x2rVkqpB4pbgjg9YpErh3fidPny5SEiD8SrfPny7mhSpdRDyi2XTdokFjmT\nBfGTJ08is/PVswuRTC9YVUopl3HjcIp35hmVUkpl6L4YTlFKKXV3NIgrpVQ2pkFcKaWyMTcF8RgN\n4kop5QLuCeKesfDxzj5BPCIiAu3bt0fevHlRoUIFzJo1y91VUkopAG46xRAescjtnX0u9nn//feR\nK1cuXLp0CTt27MBzzz2HWrVqoVq1au6umlLqIZflPXGbDYBn9hkTj4qKwu+//47BgwfDx8cHjRo1\nQrt27TBt2jR3V00ppbI+iFutADxj4e2ZPYL4oUOHkCNHDvj7+yem1axZE/v27XNjrZRSysjy4RSr\nFYDXnQdxV1wIeTcXhd68eRP58uVLkZYvXz5ERkY6XyGllHKSe4L4XfTE3XVVft68eXHjxo0Uadev\nX4evr697KqSUUslk+XCKxQLAI/sMpzzyyCOwWCw4evRoYtquXbtQvXp1N9ZKKaUMNwRxAl6xyOGZ\nI6tXfVdy586Nl156CV9++SWioqKwceNGLFmyBF27dnV31ZRSyrEgLiKtRCRMRA6JSF8789uKyC4R\nCRWRbSLSLL2ybsfFAVYveIhbTlG/K2PHjkVUVBSKFi2KLl26YPz48Xp6oVLqviCZ3QJWRDwAHALQ\nHMA5AFsBvEYyLFme3CSj4v+vAWAByUp2yuKRU5GoNKEYOPhW8vQH6la0D8q2KKXuD/Fxxe7pHY50\nh+sBOEzyJMk4ALMBtEueISGAx8sL4HJ6hUXFxkJs2WM8XCml7neOBPFSAE4nmz4Tn5aCiLwoIgcA\nLAfwUXqF3Y6NhVizz9WaSil1P3PZwDTJhSSrAXgBQLqXM8ZYtCeulFKu4sh54mcBlE02XTo+zS6S\nG0XES0QKkbySen7QmG/APTcRGBiIgIAABAQE3HGllVLqQRYSEoKQkBCH8jpyYNMTwEGYA5vhALYA\n6ETyQLI8/iSPxv9fB8BvJP3tlMXFm/eh49yOiBm1P3n6A3Mw8EHaFqXU/SGjA5uZ9sRJWkWkF4BV\nMMMvk0keEJEeZjaDAHQQkW4AYgHcAvBqeuXFWGLhQR1OUUopV3DosnuSKwFUSZU2Idn/IwGMdKSs\n2zomrpRSLpPlV9zExGlPXCmlXCXLg/jtuBgN4kop5SJZHsTHHfoCHsxe54mPHTsWTz75JHLlyoW3\n337b3dVRSqlEWX4r2tfL9cW8FVUyz3gfKVWqFAYMGIDg4GBER0e7uzpKKZUoy4N4Q78XEXw7q9fq\nnBdffBEAsHXrVpw9m+4p8kopleXc8ng2T8+sXqtSSj2Y3PJkH6+7WKsMcv75bByoF+EopR4sWR7E\nhw0DfHzufDkNwEoplVaWB/Hu3QF9splSSrlGlgfxzp2zeo3Os1qtiIuLg9VqhcViQUxMDLy8vOCp\ng/tKKTfLPs9Ic6PBgwcjd+7cGDFiBGbMmIHcuXNjyJAh7q6WUkplfhdDl65MhPbW9yDd+e9B2hal\n1P3B2cezKaWUuk9pEFdKqWxMg7hSSmVjGsSVUiob0yCulFLZmAZxpZTKxrL8Yh97ypUrBxHn741y\nPyhXrpy7q6CUeog4dJ64iLQC8D2SHpQ8ItX81wH0jZ+MBNCT5B475dg9T1wppVT6nDpPXEQ8AIwB\n0BJAdQCdRKRqqmzHADxNsiaAwQAmOlflB19ISIi7q3Df0LZIom2RkrZH5hwZE68H4DDJkyTjAMwG\n0C55BpJ/k7weP/k3gFKureaDR3fOJNoWSbQtUtL2yJwjQbwUgNPJps8g4yDdHcAKZyqllFLKMS49\nsCkiTQG8BeBfrixXKaWUfZke2BSRBgACSbaKn+4HgHYObj4OYD6AViSPplOWHtVUSqm7kN6BTUd6\n4lsBVBKRcgDCAbwGoFPyDCJSFiaAd00vgGdUCaWUUncn0yBO0ioivQCsQtIphgdEpIeZzSAAAwAU\nBPCTmBO+40jWu5cVV0oplcX3E1dKKeVaWXbZvYi0EpEwETkkIn0zXyJ7E5HJInJBRHYnS/MTkVUi\nclBEgkUkf7J5/UXksIgcEJEW7qn1vSEipUVkrYjsE5E9IvJRfPpD1x4iklNE/hGR0Pj2GBqf/tC1\nBWCuQxGRHSKyOH76oWwHp5C85y+YL4sjAMoByAFgJ4CqWbFud71gztCpBWB3srQRAD6L/78vgOHx\n/z8KIBRmeKt8fFuJu7fBhW1RHECt+P/zAjgIoOpD3B654/96wlxX0eghbos+AKYDWBw//VC2gzOv\nrOqJZ3rB0IOG5EYAEamS2wGYEv//FAAvxv/fFsBskhaSJwAchmmzBwLJ8yR3xv9/E8ABAKXx8LZH\nVPy/OWE6OBF4CNtCREoDaANgUrLkh64dnJVVQfxOLxh6UBUleQEwgQ1A0fj01O1zFg9o+4hIeZhf\nKH8DKPYwtkf8EEIogPMAQkjux8PZFt8B+BRA8gNzD2M7OEVvReteD9VRZRHJC2AegN7xPfLU2/9Q\ntAdJG8naML9GGotIAB6ythCR5wBciP+FltGpxw90O7hCVgXxswDKJpsuHZ/2sLkgIsUAQESKA7gY\nn34WQJlk+R649hERL5gAPo3kovjkh7Y9AIDkDQDLAdTFw9cWjQC0FZFjAGYBaCYi0wCcf8jawWlZ\nFcQTLxgSEW+YC4YWZ9G63UmQspexGMCb8f+/AWBRsvTXRMRbRCoAqARgS1ZVMov8DGA/yR+SpT10\n7SEihRPOuBARHwDPwhywe6jaguR/SZYlWREmHqwl2RXAEjxE7eASWXUEFUArmLMSDgPo5+4julmw\nvTMBnAMQA+AUzD1l/ACsjm+HVQAKJMvfH+aI+wEALdxdfxe3RSMAVpizkkIB7IjfHwo+bO0BoEb8\n9ocC2AXgP/HpD11bJNu+Jkg6O+WhbYe7fenFPkoplY3pgU2llMrGNIgrpVQ2pkFcKaWyMQ3iSimV\njWkQV0qpbEyDuFJKZWMaxJVSKhvTIK6UUtnY/wMFcHQjp/06BAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7fc251dff390>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFMf7B/DPgIAgRbGBqIi9t0RjLzGJJLHFrrHFFI2/\nmBiTqPkmxovRGI0mxhpNbLH3rthRQbGiiBWwUQQpSpVyd8/vj+HgjnpwJyfwvF8vXtztzs7Ozu09\nOzc7uyuICIwxxoonM1MXgDHGWOFxEGeMsWKMgzhjjBVjHMQZY6wY4yDOGGPFGAdxxhgrxvQK4kII\ndyHEHSHEPSHE1BzmlxdC7BJCXBdC+AghGhu/qIwxxrLKN4gLIcwALAHQE0ATAMOEEA2zJPsfAF8i\nagFgNIBFxi4oY4yx7PRpibcFEEBEj4goDcAWAH2zpGkM4CQAENFdALWEEJWNWlLGGGPZ6BPEXQAE\na70PSZ+m7TqA/gAghGgLoCaA6sYoIGOMsdwZ68TmbwAqCCGuAvg/AL4AVEbKmzHGWC7K6JEmFLJl\nrVE9fVoGIooHMFbzXgjxAMD9rBkJIfhGLYwxVghEJHKark9L/BKAukIIVyGEJYChAPZpJxBCOAgh\nLNJffwrgNBEl5FIQ/iPCjBkzTF6GV+WP64Lrgusj77+85NsSJyKVEOILAEfTg/4qIrothBgnZ9NK\nAI0ArBNCqAHcBPBxfvkyxhgznD7dKSAiDwANskxbofXaJ+t8xhhjLx9fsWki3bp1M3URXhlcF5m4\nLnRxfeRP5NffYtSVCUFFuT7GtG3cCAwbBphx06VESkoC9u8HhgwxdUmMTwgByuXEJgdxViqkpADW\n1sCDB4Crq6lLw16GkyeBHj2AqCigYkVTl8a48gri3CZhpUJwMEAEPHxo6pIUH6dOAXv3vtx1LFgA\nXLpknLyeP5f/+/YFoqONk2dxwEGclQqPHun+Z/nbsgVYt+7l5Z+WBnz7LfDvv8bJLyICGDwYiI8H\nrl83Tp7FgV6jUxh71X3zDdCnD9C1a/Z5p08Db70lX5siiH/+uezOMTMzXsAqCteuya4JABg1CggN\nBY4dM845BSKgYfpt9CwsgNRUoHt3ICQEWLoU8PUFWrUCevXSP8/wcJmnlVXJOVgHBAAKRd5puCVe\nShEBarWpS2E4pTLzi3/yZM5prlyR/8uUkd0p2tutea1SAbGxMpgAsn6y0l4ut1M7mnpNSpL/iYBt\n24A1a4BVqwq0aS8NUWb5c9sHVCrA3x8ICwPOnwc8PGRL18NDHpC0JSXJuouNlcvpIykJuH8f2LxZ\nfiaabptRo4BDh4A//wR8fAq2DRERgJOTPOdhSLdZWlre2xIXl7m9sbFyHwRk+hcvMvel2Fj5PiuV\nKnP/iI2V69OmVsv9MDYW+PtvYNOmvMvLQbyU2rABGDnS1KUwXP/+svXl6pr7T2hNa3LIENn/6uIC\nREbKoGpuLud99x1QpYpsDV65kr1Fr1IBzZsDV68CgYFAy5Y5r2vSJKBcOcDREfjyS9l6jYmR8ypV\nMnx7jWHGDOD33+XrVq2Ay5ezpwkMlPXx1luAuzswcaL8tTNsGFC7NpCcLNM9fCgDZ82aQLVqwJgx\n+pUhOhqoXh1o1Ag4eFAG76+/Bjp3BtaulYEyr0A8fTowa5YMoE2bys8+PFyWpVYtw1ri77wj8xk7\nNvu8detkvdSsKf9cXIABA+S8Dz+U89zdZV3UrAlUrQo8fqybx9dfy/3j/fflejp0yDwgeXsDr78O\nNG4sl9+0CRg4MO/ycndKDkJC5A4WGio/JH1ERwM2NnIERGERyXVWL8T9H7OWNTkZSEjIPXD884+c\nr1LJwNa6texLjI4GHBxk60C7HETAxYuZrYaWLQFbW/lauw/ytddkHTx6JL9gderkvP6QEN0vqaUl\n0KSJbOU5OmZPW726DLyVK8t84+OBu3flTh8VJb8oPXvK9CqVLKtKBdSvL8vy338yAFWvLltsp09n\nBjIAuHAB2LlT9ql6ewO3bsnpCQky0G/bBty8KU/Evfce4Ocny1CmjFwPkfz/8KGs+5Ej5ZDGrl2B\nChWAZ8+AevVy+/Sy07TmNHWhVss8Cjrqgkh+ptr7gY+PPNA8eCC3Y80aGTi0Xb8uP+Pdu3Wnf/SR\nDOyLFwPt2wNbt8oAvGSJPLHo6gqcOCG7NCpXBhpkuQQwKgq4c0duW8WKmSOF/v1XBquICNl6HTNG\ndiVcuCDr+LXXdPO5dUseUF97Dbh9W34uQUEyaNrZAcuXA4mJcjuDg+U+0LixTJOSkr1sV67I9T59\nKver4GC57548KffNKlWA8uXldu/cKQMwIJdxcZHTPDyAd98FDhyQBxR7e9mVtmABMGiQTO/gILep\nRQvg6FG5b3fsKIO1q6v8BeLrC7RtKw+kgNwXyuQVqYv4+n961cXGyh9qt28TWVkRpaTot9yIEUR/\n/WXYun18iFxdC75cSAhRuXJESmXmtBkziAYPzjl9UBCRrS2RoyPRwoVEZmZEDRsS1akjt7l2bSIL\nC6LQ0Mxl1q4lcnYm6thRlnH27Mx5gwcTNWlCVL8+0YQJRElJRPb2RLVq5bz+tDSZV4cOMr+OHYmc\nnIgaNCAaO1Y3bXAwkaUl0alTskzh4USzZsl12dnJ8hPJbS9Xjuj5c/k51KhB9PrrRC1ayPWcPi3T\nrVxJ1K4dkbk5Ufv28rNOTpZ5xcQQ1a1L1KmTnB4fTzR8uKybypWJli4latqUyMFBzvf2Jho3jujD\nD2V5WrUieu89+T8oiMjdnahePaLJk2UeXbvq/5n+/jvRG29kvl+0SOZbUFu3ElWvnrlvqNVyW8zN\n5V+NGkQVK8o60Pa//8l9KCcnTmR+bl27Et26lTlv1qzMeXZ2ct/U1q6d3M9sbIjefFNOe/NNooSE\nzDSffkrk5yfr2NlZ7pNZ82ndWn7e9eoRTZtG1KMHUffuRJGRRBERRM2bE40ZQ5SaSlS1qvxcu3SR\n+32HDkQVKsi6IJKflY1NZrlXrpTTZ87U3ZY6dYh695Z5avvzT5lm7lyi69eJ5s3LnHfzpqwjTT7l\ny8t6v3KFSKGQadavz5zfsyfR4sVE+/bpriM9duYcV3Ob8TL+ikMQv3tX1sqIEfL/9u3yy+3rSxQd\nLdOcOCE/rMBAokuX5LT27YkGDSK6fDl7nomJRGfPEnl56QZab2+ie/fkTnT+PNHy5XKd0dFEjx/L\noHH0KJGnp3y9dCmRh4fMKylJ5nXiBNGZM3K5W7eINm6U6WrUkDs4kdxZz5zJXO/PP8tga20tg88v\nv8jlLS3lju/mJt8fOiS/XCtWyACyY4dcfuNGuTP/84/cSR0cZB09eiQDwpdfyi+mrS3Rs2fZ6+PQ\nId0ARUS0aZNcZ9ZAtX+/nO7iIsv3xx9yuywtib7+WjftG2/IL0DDhkTHjxOpVPKAY24uy6axapUs\nW2IiUc2aRMeOyfoiIhowQK5PCKJz5+TBSAi5rZqya+aPGCEPhPb2clrz5kSNG8sARES0eXNmg8DH\nh6hNG6KwMPn57N2rW/boaKIbN2Q9Ll8ut9HKiui332T6hg3lNv/9N5G/P1FUlFxu7165P+zalbmP\naP+1bSuXmzZNvp8/X5bZ2lpO//hjom7diHbuJLp/X+6PRPJgtGtX9s+uID75RAY2zT45d648WPv6\nynoZODD3ZdPSZJpNm2TA1nzPNBwdib77Th7YNXWhLTxcBsxvvpFB+9Qpmd+QIXJ+tWpEGzbI7f3l\nF7k/52XsWLmvqFQFqoJsZsyQ36+C4iBeAKdPZwY0zf/Vq4nef18GiOhoOb17d/mFbdNGLletmpzu\n5CR3QG07d8ovupkZ0YEDclpkpNwBHR1l4LOxyTxwnDwpg8l778nlHByIxo8n+vzzzFbg1q1Ee/bI\n1//9J/+PGyd3tM8/lzumjY1sTfr4ZAZ5tVq2KC5elIGhRg15MFi6VAbMgAB5oOjbl2jOHNkifO01\nGQQ0rTV/f5mfpjU/aFDmti5aJNd/6ZJsdWlawNqGDpXr05aUJOvX2lq3pfPLL0QffCAPDOvXy7pq\n0IBo9255oNP22WeyXF9/nXmwPHiQaMoU3YPnkyfyC0xE1LmzrOvhw+X748eJJk2SracvvpAHo9Wr\nZT0SyV8nANHEiXI7Fy+WAX7MGBnEy5WTv+aIiF68yGzV3bgh95c//5S/DhwdZSNA45tv5K+Z776T\nLbIZM+Q2fv65/Js+XQbsatXkspMmyeUB+YvDykp+/pr0mr8pU+TnqT1t2TJ5MDh0SDYeVq+Wn/cX\nXxD16iUP3OXLy3oyxK5dclusrTPXvXs3UVxc5v6al8WL5T737rty39SIi5N5RkfLfSI3f/8t1+nt\nLQ+OANGvv8p5774r3zdpIv//+GPeZQkIkPVlKO19ryA4iJM8oj99mn26Uilbd2q1DHKjR8sWXeb5\nb/mFeu01+VNn8mQ5zdFR/re2lgHIwkIG6YoVZVBbuzZzHT/9JNNq5v37r2yVVKwov/SWlvK1EHKn\n+vFHGayfPZMth3ffzcxr1CiZ199/y5/xgAxwlpZy+QULMtO+9prs6mjbVub//fdyh27YUG6vu7uc\nlpP//iNq1EgG+ayBOC1NBo21a2UrV/sLpm38eHkgOnZMBtZnz2RQc3DIufVEJAO0n58M5JMny/cb\nN8p5KpUsj3ZXjrZly+TPZs3PZH2MHCnr0MNDd7rmgDh5su50TXeEt7fu9KgomU/58jmvJyhIdi9N\nnSoDycSJ8kAxfrz8q1hR/tnayoNkbmbNkvueo6Nc3t1dLmdvr/82ZxUbKz+TJk3k59m7t+4+V1i+\nvvJ70bx59nmOjrLLRh8ffSS/MxoKhdyHC6pmTXlQJ5KNEu3v+PbtBc+vKJX6IP78OVHZsrJVl5Wm\nNXP1qgzggOxqcHSUARaQ011cdD907b/9++UX9Phx2b0wfbrujtu3r/zi3rol+9Y0Lfy9e4kuXJCt\nocBA2aLbtk3O0/zsCw6WP3M1wsJkq+/772VAc3CQLbuffpLLa/ctenvLwLZihWy1d+okW6ua1oiv\nb+7B9PlzeaDYvDnnn5AnT8oDoLe3bitXW0CA7Ie0tJT9spqD09GjuX1S8qCzfr3sM6xZU5ZB07LV\nlFnTKs4qOjrn7qy83LghW0ZZt3HDBvk5rVuXfZkzZ7L/2lKrZfouXXJeT3i4DP6jR8vunKgo2W2y\nbJn8271bbnN+XRhxcbIO9u6Vy9+/L9er6TorrOHDM4PZsmXyoGMoTes3p66K1q11Gxx5mTZNHryI\nZPdH5cpy/ysoL6/MX5PBwbJbEZD7W2JiwfMrSqUiiH/7rW6/54ABcmfs1k0GvHr15J+mlTZ9ugwy\nJ07IWvjii8y+zZkzid56S3ahlC8vWzwWFkRlysg8zM1lOgsL+aWtUUN2r2hER8u8hg2TrY0aNWRf\nO5FsiTdsKH8WZw0ERPJEaqVKmS2GnKxfL1tgdnZE/frl3JLMKipKpnd0zN4N8TIdPizXeeCA/KUy\ncmTe6WfPlp/l6tXyl4apJCTI+tL0b+sDyDzRmlVcnGwU9OyZ92dbUGq1/DXYubNh+Rw5IhsqxqRW\ny+/BxInZ5w0cmHdXiLaFC+Vn0aGD/KU1aZJxynfvnmxUGNrPXRRKfBBXKuWOrDnb+/Ch3LIaNeTP\nU0C2cOrXlyernj6VAXnbNhksqleXZ6ubNpVnsleskGe4ExJkK9neXgbz4GC57CefyP7mkBDZwvLy\nkvM01Gq509nYyPU3aJB58IiLk32lkZG5b09e84gyT2R26JDZpZJb61Sbi4s8i1/UNNtz9aruL4Wc\nHDggD6BffaV7lt8UtD9TfYSE5N6Vo1TK7q4WLQr+ayE/bm55nyTUh1pd8O3VR7Nm8mRqVpGR2UfE\n5GbjRrmPb9mi25o2hqyjXl5VeQXxEjFOPCBA/v/vPzlAv0UL+T44GPj5Z3lhy/vvAzduADt2yIsB\nlErgp5/kmNUJE4Bly+T438REOT60ShWZR6tW8sIDF5fMcdOurnI8qmZcdtWquuURQqZxcACaNZNj\nlUX6/cfs7OT/smVz3578LgrRjDdu21aOTa9TJ3PMdl7atcu8MKEoabanVav807ZuDZw5A3h6AseP\nv9Ri5aug4/XzuqbA3FyON9ZcHGNMVasanqcQhbs+IT9Nmsjx2VkV5MInzXfxZdxiVt/rQF5lJSKI\nX78ur5K6e1cOlu/QQV5kMW2anP7jj/J+D82ayQsbzpwBOnUCvLzk8o0ayR24ZUt5VZrQuuGjlZUM\nkKFaj4Z2csr/S1OrlrziavFi49+/2slJHmzKlpV5z5ql33Lbtxu3HC+Ds7O8qEWt1u/AVJyULSsv\nctEEJWPRZ380lc2bDc/jrbdKxi0iXpYScdn9nTvyaK+5cqx1a8DNTc5zdc0MorVqyftAPHwIDB+e\nuXyrVvKKqm7ddAO4xtKluq2AFi1k2ry8+aa8gvBlPYDAxiYz75zKnBMh9E9rSjY2JS+AA/IXHSBv\n+GRMnTtnv6KxpCkO+62plIiHQkyaJIP1oEGy9bt1q/zfrZu80YxmB4iJkZf69uwpu1D69pWXX3fp\nYvQiMZaNpssiONjUJWHFTV4PhSgR3SmxsfK+BtWryz7wLl3kPROmTtU9gleoIPukW7TI7Mfmp7yw\nolS3rqlLwEqaYh/EDx6UN81xcJDvp0/PnJf1PryaE44tWsg+RHPzknFigxUfHMSZsRX7IP7ZZ/Lu\nad9+q1/6X3+VJzXt7eVoljzvDsaYER08KEcIMWZMevWJCyHcASyEPBG6iojmZplfEcAGAM4AzAEs\nIKK1OeRToD7xAweA9euBN94AJk/OPl/z8FsieSvJ1q31zpoxxooNgx6ULIQwA7AEQE8ATQAME0I0\nzJLsCwDXiKglgO4AFgghDG7jbt0q7/s7c6a8z29WmoffApndKYwxVproMwCuLYAAInpERGkAtgDo\nmyVNOID0y1hgByCaiJSGFu7hQznipE8f3fGm8+cDv/yi+/SO8uUNXRtjjBU/+gRxFwDag6JC0qdp\n+wdAEyFEGIDrAL4yRuEePZInIkeNko9F0gz4X7ZMXm358GHm6BNuiTPGSiNjndb7HsB1IuouhKgD\n4JgQojkRJWRNqNAaMtKtWzd0y+WqmYYNZXdJ9epAjRrysWCdO8sHiGqC+fHj8iKfhw/5BCVjrOTw\n9PSEp6enXmnzPbEphGgHQEFE7unvp0HejGWuVppDAGYTkXf6+xMAphLR5Sx56XViMzxcXn4NZPZ5\nv3ghx3lrnrTt5iaff9i7N3DkiHxWXWl3LOgYIhIjMKL5iEIt7xPig+r21VHd/iXcRMPEroRdgZOt\nE1zsDR9TmpSWhAshF9DdrXuh8wiLD0NoXCjauLTJmOb50BOXw+RXpmq5qhjRfASEiS5VPHH/BDrV\n7ASrMlYmWT/TZdCJTQCXANQVQrgKISwBDAWwL0ua2wDeSl9ZVQD1AdwvbIGvX5cX42jfrMnaOvNS\nekC2yiMj5b1R+vcv7JqM69mLZzhx/0S+6Xbf3o00VRr2390PpVqJfXf3IUWZku9yhwMOIyE124+b\nDBMOTcDI3SMRlRSFRRcWwfuxt95lD40LhfsGd/TZ3AdHAo/ovVxxMfX4VGzx31KoZTff2IzZZ2bD\n/6k/AGDKsSkYuH0gDLn6eM7ZOXhnwzuYdWYWZp+ZjZmnZ2LgtoEIiw9DeEI4vjv2HW48vZFtufCE\ncMw5Owezz8zGr2d/RWhcaA65Z5eUloTDAYdznZ+iTMHeO3sBAF6PvfD2+rdxPuR84TaOFal8gzgR\nqSBHnxwFcBPAFiK6LYQYJ4T4LD3ZHACvCyGuAzgGYAoRxRS2UNevyyeT79ihO71FC9lCd3aWdwYE\n5D0jFi0q7JqMa8etHZh8NIexkFoiEiIwcPtA/HDyB/TZ0gfXw69j5O6ROP3oNOJS4vDr2V9x9cnV\nbMudCz6H9ze9jw1+G3LNNzIxEp1rdsbg7YOh8FRgwfkFepfd86En3q7zNnrX753vNuTnWvi1jICn\nL6VaiS3+W3Dw3kE8T35eoGXD4sPg+dAzz7x9QnwQGBOYZz7xKfHYd1e3fZKmSsOn+z9FWHwYem3q\nhclHJmPf3X0gIoQnhBeonBoqtQrbb23H9C7T8SLtBZLSkpCiTMHG/hvxR88/MP+d+RjdYjS+O/Yd\nZpyagRmnZuCP83/gSOAR9N3SF1fDryIpLQnewd749eyveq1z3919eG/Te/B67JXj/HPB59Bvaz+E\nxYdh9J7RcLF3wZP4J0hTpWH7zVf7zmm7b+/G6YenMevMLCQrk01dnCKnV08yEXkAaJBl2gqt11EA\nehurUAEBOd/Q57PP5EnOhw/liUwzs5dz+8zC8g72xp2oO0hTpcHCPPtdjnbc2oGA6ACoSY3fz/0O\nADgfch5xKXH40+dPpKpSkaZKw/LLy3Fzwk3subMHtyNvo2yZsgiICUAX1y7Y4r8F418fDyAz8I1o\nPgJnH59F+xrt0dqpNZZdXoZ/e/+L37x/AwCoSY1119bho1YfAQD2392P21G38U37b2BuZg4AeJLw\nBDXta2J61+lYcH4B5p+bjy/f+BKW5pY5buv2m9vRt2HfHOfP854HGwsb/NvnX2zx34Je9XvB1lL3\njlbbbm6De1132FvZAwD8IvwwbOcwAMDmAZsxtOnQbPnef3YfwbHB6Fqra7ay7LqzCxs+2IC/L/+N\nj1t/jNoVamfM94vwQ2JaIoKeBeW4LRq7bu/CmL1jcHD4QbxIe4EBjQfAN9wXdRzrYOn7S9Herz2C\nYoKwb9g+fH3ka/g/9Yeznez3uxFxA8nKZLRxaYOdt3birdpvwaGsA25F3kJCagLaurTNWE/QsyDY\nWNhgcvvcD5aT20/GyisroSZ5Amjrza24EXEDM7vPxKR2k1DGrAyCYoLQYXUH/PXuXyhjlvtX+WLo\nRfxz9R+4lXfDL2d+wbjXxkGpVqKidUVUsqmEFk4tEBwnxy6M2TMGdR3romHFhniS8ATngs9h8I7B\n+PT+p2hRtQUcrR0R/SIa/9fm/4qkq4eIsPHGRgxtOjTHbYxMjMSg7YNAIDhaO6KyTWW0cWmD1s6t\nsefOHrxV+y2YC3MsOL8A79V7D62dS97FJCY/Hbh2LTBypLwEXiMiIrNPXNubb2a+9vICqlWT92g2\nlZC4ECz0WYjPXvsMdR3r4uzjszATZgiMCUSjyo2ypR+0fRAAYFrHaVh6aSkGNh6Iw4GHYWluCY9A\nD8zsNhOT20/GB1s/wIn7JzDx8ER80/4beAR64HzIeZwZcwZ9t/RFWHwYqtlVw52oO/ho70f4oOEH\n+PHkj5j15iy0r94efRv2hYudC4Jj5RfzTtQdjN03Fm/XeRuJqYkYu28s3Mq7wSfEBy2dWuL7Tt9n\n5FnGrAzS1Gn47th3OP3oNBb2XIg6jnV0tuNx7GMM3jEYe4bsQd+GmaNNvR97w97KHt7B3khWJmP9\n9fUYf3A8lr63FGNajgEAxCbHYr3fekw5NgU/dP4B3d26o0ONDjotdzOR8w/EN/59A1FJUaAZlFH/\nfhF+8H/qD/+n/th0YxM2+W+CR5AHfuz8IxpXbowGlRrA94kv2lVvh6BnQTj98DRc7F1Q17Eu1viu\nwZCmQ2BjYQOvx15YeXUl6jnWw+Dtg1HBugIGNB4A78fe6FC9AwDonGtoWrkp/CL8UMG6AogIv3n/\nhnIW5fB3r78xes9ofNfhO8SmxOJPnz/h6uCKQx8eQlRSFLq4dsGNiBtoVrVZnvtWVduqmN418x4S\n414fh9uRt3X64es41oGrgytOPTiFt+u8nWte3xz9Bl6PvbBnyB4M3D4Qpx+ehlKthIpU6FW/F/YP\n24+gmCC86fYmjt8/jrX91uJJ/BM8iX8Cb6U3etfvDbfyblh6aSmeJT9DReuK8AnxQZVyVdDVtSuu\nPrmK+NT4jPVVtqmMKR2nZDQQAOBQwCEcv38c7au3x73oe2hSpQn6NeyXMd8j0AP1HOtl7GunHpyC\ns50zLoZexOg9o9GmWhs0qKTTjgQgD27v1nsX418bj403NuK7Y9/B1tIWXmO9MGTHECx7bxlsLGzw\nx/k/cPLBSZwcfTLPes/No+ePsOjCIjhaO+KHLj/kmu7h84e4EnYFAxoX3Y37TRrE1Wrgk09k/3Yd\nrTgRHp79QQtZtW0LrF6ddxrfJ76IeREDZztnPIl/gh61e+RbJpVahWWXluHzNp/rHPk9Aj1Qu0Jt\n1K8o+3EO3juIgwEHsfzycpQtUxYudi6oUq4KmlVphqNBR3E94rpOa1LTl3185HG0r9EePWr3wKXQ\nS1hzbQ0mvD4B/Rv1zyhfp5qdsPLqSlQtVxU/df0JLZ1aYuiOoWhXvR36NuyLT/d/inX91iEoJghK\ntRIegR5IUaVgYOOBAAAXexeo1Co8S36GFGUKzgWfAyB/Mj978Qx9G/TF7DdnY9ONTdh9Zzcuhl5E\neEI4vm73NQDg4icXYSbMMNd7LiYenoh6jvWgIhVaO7fGO3XewfgD41HJphJmeM5ADYcaaO3cGk/i\nn6DPlj5oU60NktKSEJUUhVF7RsFMmGGL/5aMID75yGT85/cflGolFKcVuBdzLyOIT3h9Aq5FXMux\nO+W/6/8hKikKdR0zbz6y/+5+TDoyCU62Toh5EYOdt3diTo85WO+3HoN3DIZbeTfM7D4T/k/90ate\nL8w8MxPjDoxDxxodMa3TNIzdNxb+T/2xoOcCfHP0G1wMvYgDww6g75a+CIkLwfPk5zgXcg59G2S9\nLALoWqsr5p+bjwXnF6B51ebwfOiJxpUb48C9A0hMS8Sss7PQr2E//Nj5R2y7tQ1NljUBANAMgv9T\nfzSt3DTffVGbk60TnGyz3zR8aNOh2OK/JVsQX+izEIExgehZpyduRd7CgWEH0LNuTxz+8DDmec+D\ntYU1RrcYjY/2foSniU8R9CwIo5qPwvedvkenmp2w7eY2bLixAamqVMzpMQf9G/XH0KZDEZsSi/Jl\ny2PX7V1IVaViyI4h6OLaBe513TPWvfXmVliaW+K9eu/hcexjvF3nbYw7MA5jW47FJ/s/gZ2lHWqV\nr4V+DftcHcA/AAAgAElEQVTBI9AD++/ux5prazCy+Uis6C1/4M86OwutnFrh5AMZdIPjgnWCOBFh\n/rn5mH9+Pg4MO4A2Lm3gE+KD+NR4NKvaDF3XdoW9lT3mnZsHCzMLzH1rLqYcn4LHsY9R06Fmgeoe\nAOZ6z0VkUiTWXV+HEc1HYOWVlYhPjce3Hb5FTYeaCIwJhP9Tf8zzngffcF/UdKipc9L6pcrtkT8v\n4w9ZHs8WGSkfu3TihO6jiGrWJHrwQJ+HFuWt9l+1CQrQjFMzyO5XO3rwLP9MjwcdJyhA87x0nw0G\nBQgK0Kqrq2i+93xqvaI1QQH6cOeH1H1td+q0uhMdCTxCf/n8RWVnlaX6i+vT0otLKS45jhacW0D+\nEf5U+6/aOnmuv76eoADtub0nxzKM2TOGiIjSVGl0POg4ERGFxoVSs2XNaP/d/TTfez5BAfp478fU\ndU3XbNtS5fcq9NXhr2jMnjFUd1Fd+vLQlzTj1Az66eRPGWkiEyOpz+Y+BAXoxH3dD+Lx88cEBWjc\n/nG0yGcRuSxwoQaLG9DHez+m+zH3acyeMTR+/3giIuq3pR/129KPoAAN3zmcvB55Ua9NvWjI9iFU\nbnY5+svnL3rw7AHZz7Gna0+u0Q8nfiAoQB1XdaSLIRfJbaEb7bm9h7498i2N2DWCjgZmPk35zMMz\n5Dzfmf53/H/U6u9W9LXH17Tz1k6afnI6NVzSkKAAtVjegqAABccGU1RiFPkE+9DiC4up/uL61GNd\nDzp07xAN2zGMKs2rRI5zHenHEz/Sexvfo2oLqlFQTBBVnleZjgUdI5VaRWcfnaXWK1rT2UdnyXm+\nM92PuU9ZJaYmku2vthnb3H1td7KeZU19NvehHut6EBSg88HnKUWZkrHvdF4tH4TZZ3Mf2ui3Mc/9\nUF+XQy9T8+W6j5MPjA6kyvMq09AdQ6nSvEo0ePtgnflBMUH0+Ll80Oq3R76lNivbkPN8Zzr76GxG\nmqOBRwkK0IQDEygxNfenCHs98qLnL55ny7/SvEoZ233i/glqtqwZERFdDLlIV8KukNN8J1p4fiG5\nLXQjxSkFbfTbSOV/K0+f7P2EJh6aSFCA7OfYk9N8JxqxawSturpKZx3rr6+npsua6uwna3zXEBSg\n0LhQWnl5Jd2Lukerr66mf678Q8lpyTTj1Azqu7mvXvV6JewK7by1k4iIklKTqPK8yhQUE0QfbPmA\nfjr5EznPd6YBWwdQ70296bN9n1H9xfWp7KyyVOevOrT5xmaqtbAWfbL3E/ra42tKSMnnmYTp1Go1\nLTi3gKKTonWm77y189V9xuaNG7IEq7Q+H7VaPh09KUmv7c5T23/aEhSgz/Z9Rk2WNqEe6/J/wOSn\n+z6lD3d+SDX/rElzveaSSq2i2WdmU7UF1eh379+p4tyKBAXI/GdzggJ0NewqWf5iSVCA4pLjKDQu\nlIRCkNnPZgQFyH2DO0EBWnh+IXVc1VFnXYfuHSIoQMlpug8NTFWm0hrfNRQQHZBjGT/b9xktu7iM\nPj/wOVWeV5mc5zvTyF3Zn0Cs+RJVnFuRfjn9C/Xa1Is+2/cZLb+0XCfdvjv7CArQrae3suVx9tFZ\nUqnlk2RvPr1JG/02klIlH29/IeQClf+tPK24vIKsZ1lTbHIs2f5qS/vv7iciovsx9+nBswfUfHlz\nggL07oZ3qf/W/kQkg4/Zz2bkNN+JPtv3GX205yNKTE2kWadnkfnP5jR853AiIlp8YTFV/6M67b2z\nlwKjA8lmtg1BAXr7v7fpk72f0IrLK8jrkRddDr1M2/y36ZRdqVKS9SxrEgpBj58/ptjkWPJ94ktd\n1nQhq1+syOuRV8b6JxyYoLPs2D1jacrRKeQ034nUuTw480LIBXqR9oKq/l6VNvptJLeFbmQx04I8\nH3iS1S9WlKJM0fkc3De409lHZ8llgQvFJMXkmGdBPXvxjMrNLkchsSH08d6PadTuUdRxVUeacGAC\n+QT7EBSgv3z+ynX55LRkWndtHa3xXZNRXiKia0+uERTIFqD1dSHkAi27uIwc5zpS46WNaZPfpox5\nKrWKrH6xIihA9RbVy6jfQ/cO0crLKzP2FyhAC84toB9P/EiKUwpaeH5hRr298c8bdDjgsM46zz46\nS9UWVMu1TAkpCWQ9y5rSVDk8oTydT7APrb66mtwWupHDHAfyj/CnSYcn0ZDtQ4iIaL73fBIKQcN3\nDqdbT28RFKApR6fQNv9t1OrvVvTDiR+IiGj37d208vJK6rWpV8bnEZccR0ExQbT04lKddarUKpp+\ncjr13tSbrH6xotdXvk6jdo/K+Ks8r/KrG8SPH5clAIicnORf5crppTKC9ze+T1CAem/qTTtu7iCn\n+U50J/JOtnTXw6/Trlu7iIiozl91yD/CnxotaURQIKNVbDHTgpQqJflH+NO0Y9Oo7T9tyfuxN6nV\nauq8ujNBkVnoq2FXqemyptT+3/ZUa2EtggI0aNsgGrhN92m2qcpUuhByocDb9cvpX+j7499TlzVd\naMKBCQQF6H/H/5ct3e3I29RjXQ+yn2NPZx+dpbb/tKVem3pla/lHJUYRFKBnL54VqBypytSML1vd\nRXWJiOh88PmMIK8xfv94KjOzDEGBjECrUqvo3ONzVHZWWXJb6EaXQi8REdGSC0syWrYeAR5U88+a\nGV/WmKQYggJkPcuaav9Vm97b+B7tu7MvzzLa/mqbLRAvu7iMav5Zk1RqFfXf2p+gAJ15eEZnuaUX\nl1KF3yrQgK0D8q2HiyEXKUWZQl6PvOjMwzOkVqvpfPD5jPn+Ef7kEeBBnVZ3ouE7h9OSC0vyzbMg\nKs6tSOP2j6N+W/rRWt+1tNZ3LUUnRVOKMoWsZ1ln1G1BqNQqnW0oDLVaTRXnVqTWK1pnOxA2WtKI\n3ln/Dt18ejPbcgkpCeQf4U+XQi+RSq2ilZdXZnxOLZa3oMHbB1PleZWzBeM0VRpdDLmYZ5nqLqpL\nZx+dpd/O/qYz/UrYFRq6Yyg5z3emsrPK0sd7P6aVl1eS65+u5LLAJaN1HBYXpvNL/Xzw+Yxtuxd1\nj2KTY3XyjU+Jp/XX11P/rf2pzco2VG9RPbKZbUOLfBbRiF0jaOiOofTO+neozco2tNZ3LQXFBNEm\nv00Zn+Na37V0+uHpVzeIb9iQGcR9fYnCwojatjVeEB+0bRBBAWqwuAH5BPvQl4e+pJmeM7Ol07S8\nR+0eReVmlyOVWkX3ou7R6ytfz8ij/uL6GenjU+J1Wq2JqYl0L+qeTp7DdgyjGadm0MNnD2nMnjHk\nPN+ZJh6aaJTtWuu7lir8VoHqLqpLwbHBBAWyta415nnNo57re1JgdCDVWliLXlvxWo4HjithVwpV\nFr9wP3Jb6Eb9tvTLNU1oXChtvrGZys0ul+2neeOljUkoBKUqU4mIaMP1DQQFqNbCWlT9j+oZ3UhE\nMrAIhaA3171Jlr9YUrNlzfINUA+ePcjWmkxRptDdqLtERBQQHUAH7x3MFmQ0LdEF5xbkXwl6uBp2\nlRouaUgOcxwoIiHCKHlqtPq7FUEB8gn2yTbvcujlXH9JFIVua7tl65okIuq9qTf9ce4PvfLwCPAg\nKEAdVnWg7Te30ya/TXTtybVClaffln5UbUE1ggI0fv94+mDLBzRo2yBq/297+urwV3Ty/km6EXGD\nElMTSa1W04G7BzL2FY27UXcpKbVgXQWJqYm01X8r7b2zl049OEVCIeibI9/QJr9NtMlvE4XHh+e5\nfF5B3KQnNsPD5VDC58/lQ4oB+SCHKVOMk39cinyo4d3ou3C2c4Z7XXf8fu53TO86HX+e/xP9GvaD\nQ1kHHLh3APZW9vjv+n+oZFMJZsIM9SrWQzuXdlhyaQmaV22ucxWjraWtzugTGwsb1KtYT2fdc9+a\nC1tLW1SwroA21dpg7bW1qGZXzSjbVcOhBp4lP8NC94Wobl8dTSo3gatDzo8oGvf6OAxqMggVrSsi\nMjESqapUONtmH/pT2KFXzao2QxfXLqhhXyPXNNXsqmFwk8FoXLkxbCxsdOZt7L8RL9JeZAzJLF9W\n3sns4fOHaFalmc7JaDNhhvJly6OWQy0E2QbhxtMbOW6Ltlrla2WbZmlumXGCuq5jXZ2TpRpNqzSF\nvZU9OtbomGf++rKzskNQTBCc7ZxRpZxxn5SclJYEO0s7nWGMGq9VM+3DN//p/U+O+/1f7n+hko1+\nj7zv4iqfn9i4UuOMk/eF1axKMwREB+D9eu/D85EnZr85G1efXMWeO3twYPgBOFo76qR/v/772fLQ\n7DsFYWNhg8FNBme8vzb+GppWaZrrSKyCMGkQj4iQdymcOjVz2rvvyj9jiEuJQ0unlrgWfg1Otk6w\ns7TDpbBLSFOlYY7XHFwMuwi/CD+MbjEak9tPhp2Vnc6Vk5oA4PGhB1JVqQVadw2HzKDmVl5eajqs\n6TDDNwrICJiaIVp7h+7N9Yy7vZU97K3sQURIUaUgLD4MVW3zGfpTQHPfmpvjuHhtZsIMzas2zza9\npVNLnfeaIA4gx2F4jtaOcLZzRl3HungU+8joAVHD3MwcFz65gAYVsw9rKwxbS1ukqdNQ0bqiUfLT\ndnrMaZSzLGeyS/TzktMBEgDcKrjlOD0n1hbWCP8mPFsDoDC+af8NJradCEtzS7xQvoCTrRM+aPgB\nRrcYnS2Av0w5fRcKy6RBPCoKaGCc70g2I3aNgF+EH2Z2n4lr4ddgaW4JS2tL1CpfC61WtEJkUiS2\n+G/BT11+wg9dfsjxopWJb0zE8GbDMy7oKCz3uu54POmxTmA3RL2K9RA4MTDjQpms47hzIoSAUq2E\njYVNrhfwFJYxDwqaIF61XNUch+FVsK4AZ1tn/NP7H0QlReV78DBEw0pZb5tfeHaW8k7N+rY+C8LY\nB+VXkbG20aFs5u1OHSBfCyGy/ZIuTgxvyxsgIUE+uNiYgmKC8OGuD7HxxkYkpiViYOOBeDQp88bj\n+4buQ0JqAmwtbWFlboWv23+da1CzNLc0OIADcicxVgDX0Cdw56Se46u9s1ayqYRKNpVQv2L9HFsr\nVcpVQQ2HGnCr4FZ043CNwMbCBgLipQRxVrqZtCWekADY2uafTh+RiZGYdnwaHsc9xq3IWxnTHawc\ndI6+bhXccG/iPbxIe4HEtESdn++lwVu13zJ1EfJU1bYqbnx+AwIClctVzjZ/bd+1qGBdwQQlM4wQ\nAraWti+lO4WVbiYN4omJQLlyuc9fcnEJXqS9wHcdv8s3r4uhF7H62mpUtK6Ih5MeYsnFJfj+xPew\ns8re1Lc0t4SluaVOcC8NYqbE5Fgfr5qcrkzUyCmwFxd2VnbcEmdGZ/LulLxa4ksuLsGU41MQlRSV\nb17+T/1hXcYag5sMhq2lbcZJSWOc/S0pKlhXyPNGSezlsrW0RUUbbokz43qlu1OSlcmoULYCAmMC\n823B+Ef6Y9G7izC6xWgAxj0pxZgx2FlyS5wZ3yvbEo9LiUNkUiS61uqKx7GP88xnje8abPDbgNer\nvZ4xWqGlU0sk/S/J2EVmrNCq2lbNczw9Y4Vh8pZ41j5x/6f+mOM1BwMaDUCzKs1Qy6FWxi1Vc3Mz\n8iamdpyabcyxtYW1sYvMWKHtGbKHu7OY0ZmsJU6U84lNvwg/7Lq9C5M8JmFOjzmo4VADwXHBOBZ0\nLOOhAVk9T36OOhUKN+SOsaJiYW7xSl6Qw4o3kwXxlBTAvAyh7epWeBL/JGN6cGwwkpXJqGRTCd3d\nuqOGfQ1cj7iOMXvH5Pr8yufJz4vlsDPGGDOUyYJ4QgJgUzUU18KvYfst+Qw/IkJwXDCqlquKsa3G\nApAnKL0ee2F40+GITYnFi7QX2fJ6nvy81I33ZowxwIR94gkJgGV1f1QoWwHLLi2DlbkVll9ejirl\nqmD5+8vxQaMPAMj7Z6RNTwMA7Ly9EyFxIfj+xPcgEHYO3gki4iDOGCu1TBrEUfUGRrUYhbiUOMzw\nnIHGlRvj2P1j+LVHzk/w1vSPHw06ivjUeBARzGbKHxMcxBljpZHJgnhiIkAVAtGgYkt83uZzAEDM\nixj039o/1zuf1XSoicexj+Fs54z46Hj4hPhkzOMgzhgrjUzaEjezSoKtZeZAcUdrR3iO8cx1GVcH\nVzx49iDj/hN77+7NmOdgVbouoWeMMUDPE5tCCHchxB0hxD0hxNQc5n8rhPAVQlwVQtwQQiiFEHk2\njRMSADPLZJQtU1bvwjap3AS3om4hPjUeAOD12Cvj8vqXeUtSxhh7VeUbxIUQZgCWAOgJoAmAYUII\nnWvaiWg+EbUiotYAvgfgSUTP88o3IQEws0iBVRkrvQvbtEpT+D/1R1RSFBpWaojrEdfRuHJjvZdn\njLGSRp+WeFsAAUT0iIjSAGwB0DeP9MMAbM4v04QEAGUK1hJvUKkBHj5/iPCEcDSr0gwJqQkY0mRI\ntis1GWOstNAniLsA0L7uPSR9WjZCCGsA7gB25pdpYiIKHMQtzS0znnWpeaZku+rt4DvOV+88GGOs\nJDH2ic3eALzy6kpRKBQAgNOngWTXSFiZ69+dAgDdXLshMCYw4+GrL+sZi4wxZiqenp7w9PTUK60+\nQTwUgPZTeKunT8vJUOTTlaIJ4lOmAHdtdxeoJQ4AUztNhYpUcLZzhoWZBY9KYYyVON26dUO3bt0y\n3v/888+5ptWnO+USgLpCCFchhCVkoN6XNZEQwgFAVwB7s87LSUICoDIrWHcKIJ+evbrvajjbOqNK\nuSp8QyHGWKmWb0uciFRCiC8AHIUM+quI6LYQYpycTSvTk/YDcISIst/cJAeJiYAKBRudoq151eaY\n0GZCoZZljLGSQhBR0a1MCNKsb8AA4GRrJ9z+6lqez1RkjLHSTggBIsqx28GkdzFMo4J3pzDGGMtk\n4iCeUuDRKYwxxjKZLIjHJxDS1IXvE2eMMWbCIJ74IhVlzMrATJj0Wc2MMVasma4l/iIFVubcH84Y\nY4YwXUs8lU9qMsaYoUwWxFVI5v5wxhgzkMmCuJJSYM0tccYYM4hJgjgRoBLcncIYY4YySRBXqwFh\nyd0pjDFmKJME8bQ0wNwyhVvijDFmIJMEcaUSMLfiljhjjBnKdEG87AtYl7E2xeoZY6zEMFkQN7N8\nAWsLDuKMMWYI0wVxqyTYWNiYYvWMMVZimCyIC0vuTmGMMUOZtjuFgzhjjBnEdC1xC+4TZ4wxQ5ks\niMOS+8QZY8xQpm2Jc3cKY4wZxGRXbKIMd6cwxpihTNedYsHdKYwxZiiTBXEqw90pjDFmKL2CuBDC\nXQhxRwhxTwgxNZc03YQQvkIIfyHEqbzyywji3J3CGGMGKZNfAiGEGYAlAHoACANwSQixl4juaKVx\nALAUwDtEFCqEqJRXntwSZ4wx49CnJd4WQAARPSKiNABbAPTNkmY4gJ1EFAoARBSVV4ZKJUDm3CfO\nGGOG0ieIuwAI1nofkj5NW30AjkKIU0KIS0KIkXllqFQCanPuTmGMMUPl251SgHxaA3gTQDkA54UQ\n54koMGtChUKBu3eB5OBg3OhwA637tTZSERhjrGTw9PSEp6enXmkFEeWdQIh2ABRE5J7+fhoAIqK5\nWmmmAihLRD+nv/8XwGEi2pklLyIi7N4NfHi5Jm5/dxau5V0LsGmMMVb6CCFARCKnefp0p1wCUFcI\n4SqEsAQwFMC+LGn2AugkhDAXQtgAeAPA7dwyTEsDVGbcncIYY4bKtzuFiFRCiC8AHIUM+quI6LYQ\nYpycTSuJ6I4Q4ggAPwAqACuJ6FZueSqVgJqfds8YYwbTq0+ciDwANMgybUWW9/MBzNcnP6USIKGC\nuTDXt5yMMcZyYLorNoUK5mYcxBljzBCmC+JQckucMcYMZKK7GBJIqLklzhhjBjJNEFeqARIwEyZZ\nPWOMlRgmiaKpShXMwK1wxhgzlIla4ioIDuKMMWYwbokzxlgxZrIgzi1xxhgznMm6U8x4eCFjjBnM\ndEGcW+KMMWYw0wRxFQdxxhgzBu5OYYyxYsx0LXEO4owxZjDuTmGMsWKMu1MYY6wYM81dDFV8L3HG\nGDMGkwRxFXFLnDHGjMF0QZz7xBljzGAmCeJq4u4UxhgzBtO0xNXcncIYY8bAfeKMMVaMcXcKY4wV\nY9wSZ4yxYkyvIC6EcBdC3BFC3BNCTM1hflchxHMhxNX0vx/zyo9b4owxZhxl8ksghDADsARADwBh\nAC4JIfYS0Z0sSc8QUR99VsotccYYMw59WuJtAQQQ0SMiSgOwBUDfHNIJfVdK4JY4Y4wZgz5B3AVA\nsNb7kPRpWbUXQlwTQhwUQjTOK0MVlDAX+f4IYIwxlg9jRdIrAGoSUZIQ4l0AewDUzymhQqFAiN89\nIDoInq080a1bNyMVgTHGSgZPT094enrqlVYQUd4JhGgHQEFE7unvpwEgIpqbxzIPALxGRDFZphMR\nofWwvbBstwo+X+3Tq5CMMVaaCSFARDl2WevTnXIJQF0hhKsQwhLAUAA60VcIUVXrdVvIg0MMcqHi\n0SmMMWYU+XanEJFKCPEFgKOQQX8VEd0WQoyTs2klgIFCiM8BpAF4AWBIXnmqoYK5GQdxxhgzlF59\n4kTkAaBBlmkrtF4vBbBU35XyOHHGGDMO01x2DxXMuCXOGGMG43unMMZYMWayljj3iTPGmOFM1hIv\nwy1xxhgzGLfEGWOsGDNJEOd7pzDGmHGY7sQmt8QZY8xg3J3CGGPFGAdxxhgrxkzWJ86jUxhjzHDc\nEmeMsWLMdC1xDuKMMWYwbokzxlgxxi1xxhgrxrglzhhjxRi3xBljrBgz3WX35hzEGWPMUKYJ4oJb\n4owxZgwmCuJKWJjp9WQ4xhhjeTDZic0y3J3CGGMG4xObjDFWjJmsT5xPbDLGmOG4Jc4YY8WYXkFc\nCOEuhLgjhLgnhJiaR7o2Qog0IUT/vPIjoYKFOZ/YZIwxQ+UbxIUQZgCWAOgJoAmAYUKIhrmk+w3A\nkfzyJKHkIM4YY0agT0u8LYAAInpERGkAtgDom0O6iQB2AHiaX4YklNydwhhjRqBPEHcBEKz1PiR9\nWgYhRDUA/YhoOQCRX4bcEmeMMeMwViRdCEC7rzzXQK5QKKC+cRN7/9mBGvGV0K1bNyMVgTHGSgZP\nT094enrqlVYQUd4JhGgHQEFE7unvpwEgIpqrlea+5iWASgASAXxGRPuy5EVEBPORvbBtyngMaNZL\nz01ijLHSSwgBIsqxcaxPS/wSgLpCCFcATwAMBTBMOwER1dZa2RoA+7MGcJ30QgnLMtydwhhjhso3\nkhKRSgjxBYCjkH3oq4jothBinJxNK7Muku9azbhPnDHGjEGvSEpEHgAaZJm2Ipe0Y/PNj09sMsaY\nUZjkik2YcXcKY4wZQ5EHcSJwdwpjjBlJkQdxtRqAmRJl+H7ijDFmMA7ijDFWjJkkiAtzDuKMMWYM\n3BJnjLFizGRB3FzwDbAYY8xQJgriKm6JM8aYEZhsiCEHccYYMxz3iTPGWDHGQZwxxoox0wRxoRvE\na9WqBSFEifirVatWUVcpY6wUK/LmcE4t8UePHiG/+5oXF0Lk+2AjxhgzGpO0xIm7UxhjzCi4T5wx\nxoqxIg/iKhXJi334afeMMWawIg/iSpUaUJvBTJjmVuaMMVaSFHkkTVUpAeKuFMYYM4YiD+JpSiUE\nFa+ulGfPnuGDDz6Ara0t3NzcsHnzZlMXiTHGAJhgiGGaSgmoi1dLfMKECShbtiwiIyNx9epVvP/+\n+2jZsiUaNWpk6qIxxkq5om+Jq1QQxag7JSkpCbt27cKsWbNgbW2Njh07om/fvli/fr2pi8YYY6YI\n4spiFcTv3bsHCwsL1KlTJ2NaixYtcPPmTROWijHGJJN0pxQmiBvjQsjCXBSakJAAe3t7nWn29vaI\nj483vECMMWYgvVriQgh3IcQdIcQ9IcTUHOb3EUJcF0L4CiEuCyHezC2vwgZxIsP/CsPW1hZxcXE6\n02JjY2FnZ1e4DBljzIjyDeJCCDMASwD0BNAEwDAhRMMsyY4TUQsiagXgIwArc8svrZgNMaxfvz6U\nSiWCgoIypl2/fh1NmjQxYakYY0zSpyXeFkAAET0iojQAWwD01U5ARElab20BROWWWXHrE7exsUH/\n/v3x008/ISkpCV5eXti/fz9Gjhxp6qIxxpheQdwFQLDW+5D0aTqEEP2EELcBHALwZW6ZpamUMCtG\nQRwAli5diqSkJFSpUgUjRozA33//zcMLGWOvBKNFUyLaA2CPEKITgPUAGuSUbvPqxVDei4ZCoUC3\nbt3QrVs3YxXhpalQoQJ2795t6mIwxkoJT09PeHp66pVW5HcfbyFEOwAKInJPfz8NABHR3DyWCQLQ\nloiis0yndUev4PPDnyDxj6va00vU/cRLyrYwxl4N6XElxzF6+nSnXAJQVwjhKoSwBDAUwL4sK6ij\n9bo1AGQN4BrFrU+cMcZeZflGUyJSCSG+AHAUMuivIqLbQohxcjatBDBACDEKQCqARABDcstPqeYg\nzhhjxqJXNCUiD2Tp4yaiFVqv5wGYp09eSrUSZiheN8BijLFXVdHfT1ytgij6C0UZY6xEMsFDIbg7\nhTHGjKXIg/jqBz/BjCyKerWMMVYiFXmTeEj1qTh8Ksch5IwxxgqoyFvi7Sv0g10KX+3IGGPGUORB\nXK0GzIrZM5KXLl2KNm3aoGzZshg7dqypi8MYYxmKvDslJaX4BXEXFxdMnz4dR44cwYsXL0xdHMYY\ny1DkQfzgQaBz56Jeq2H69esHALh06RJCQ0NNXBrGGMtU5EF882bA37+o18oYYyVTkQfxsDDA1rbg\ny4mfDX8+G83gG1MxxkqWIg/ihQngAAdgxhjLSTE7xcgYY0wbB3E9qFQqJCcnQ6VSQalUIiUlBSqV\nytTFYowxDuL6mDVrFmxsbDB37lxs3LgRNjY2mD17tqmLxRhj+T/Zx6grE4JyWl9JehpOSdoWxtir\nwdAn+zDGGHtFcRBnjLFijIM4Y4wVYxzEGWOsGOMgzhhjxRgHccYYK8ZeiYddurq6QgjD743yKnB1\ndXTDg+sAAAQxSURBVDV1ERhjpYhe48SFEO4AFkK23FcR0dws84cDmJr+Nh7A50R0I4d8chwnzhhj\nLHcGjRMXQpgBWAKgJ4AmAIYJIRpmSXYfQBciagFgFoB/DCtyyefp6WnqIrwyuC4ycV3o4vrInz59\n4m0BBBDRIyJKA7AFQF/tBETkQ0Sx6W99ALgYt5glD++cmbguMnFd6OL6yJ8+QdwFQLDW+xDkHaQ/\nAXDYkEIxxhjTj1FPbAohugP4CEAnY+bLGGMsZ/me2BRCtAOgICL39PfTAFAOJzebA9gJwJ2IgnLJ\ni89qMsZYIeR2YlOflvglAHWFEK4AngAYCmCYdgIhRE3IAD4ytwCeVyEYY4wVTr5BnIhUQogvABxF\n5hDD20KIcXI2rQQwHYAjgGVCDvhOI6K2L7PgjDHGivh+4owxxoyryC67F0K4CyHuCCHuCSGm5r9E\n8SaEWCWEiBBC+GlNqyCEOCqEuCuEOCKEcNCa970QIkAIcVsI8Y5pSv1yCCGqCyFOCiFuCiFuCCG+\nTJ9e6upDCGElhLgghPBNr49f06eXuroA5HUoQoirQoh96e9LZT0YhIhe+h/kwSIQgCsACwDXADQs\ninWb6g9yhE5LAH5a0+YCmJL+eiqA39JfNwbgC9m9VSu9roSpt8GIdeEEoGX6a1sAdwE0LMX1YZP+\n3xzyuoqOpbguvgawAcC+9Pelsh4M+Suqlni+FwyVNETkBeBZlsl9AaxLf70OQL/0130AbCEiJRE9\nBBAAWWclAhGFE9G19NcJAG4DqI7SWx9J6S+tIBs4z1AK60IIUR3AewD+1Zpc6urBUEUVxAt6wVBJ\nVYWIIgAZ2ABUSZ+etX5CUULrRwhRC/IXig+AqqWxPtK7EHwBhAPwJKJbKJ118SeA7wBon5grjfVg\nEL4VrWmVqrPKQghbADsAfJXeIs+6/aWiPohITUStIH+NdBZCdEMpqwshxPsAItJ/oeU19LhE14Mx\nFFUQDwVQU+t99fRppU2EEKIqAAghnAA8TZ8eCqCGVroSVz9CiDKQAXw9Ee1Nn1xq6wMAiCgOwCEA\nr6P01UVHAH2EEPcBbAbwphBiPYDwUlYPBiuqIJ5xwZAQwhLygqF9RbRuUxLQbWXsAzAm/fVoAHu1\npg8VQlgKIdwA1AVwsagKWURWA7hFRH9pTSt19SGEqKQZcSGEsAbwNuQJu1JVF0T0PyKqSUS1IePB\nSSIaCWA/SlE9GEVRnUEF4A45KiEAwDRTn9Etgu3dBCAMQAqAx5D3lKkA4Hh6PRwFUF4r/feQZ9xv\nA3jH1OU3cl10BKCCHJXkC+Bq+v7gWNrqA0Cz9O33BXAdwLfp00tdXWhtX1dkjk4ptfVQ2D++2Icx\nxooxPrHJGGPFGAdxxhgrxjiIM8ZYMcZBnDHGijEO4owxVoxxEGeMsWKMgzhjjBVjHMQZY6wY+38Z\nuUqAGdlr2wAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7fc252bb85d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "data=shelve.open(\"scores/RAW_ASR_TRAIN.shelve\")\n",
    "scores={}\n",
    "#del scores_ordoned\n",
    "for key,table in data.iteritems():\n",
    "    scores[key]=round(table[1][np.argmax([x[0] for x in table[0]])][0],3)\n",
    "    print key,scores[key]\n",
    "    pandas.DataFrame(zip([x[0] for x in data[key][0] ],[x[0] for x in data[key][1] ])).plot()\n",
    "data.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}