DECODA_binary_BOW_AE_MODELS.py
11.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# coding: utf-8
# In[2]:
# Import
import pandas
# Alignement
import nltk
import codecs
import gensim
from scipy import sparse
import itertools
from sklearn.feature_extraction.text import CountVectorizer
import scipy.sparse
import scipy.io
from sklearn import preprocessing
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation,AutoEncoder
from keras.optimizers import SGD,Adam
from keras.layers import containers
from mlp import *
import mlp
import sklearn.metrics
import shelve
import pickle
from utils import *
import sys
import json
# In[4]:
db=shelve.open("{}.shelve".format(sys.argv[2]),writeback=True)
sparse_model=shelve.open("{}.shelve".format(sys.argv[1]))
#['ASR', 'TRS', 'LABEL']
# In[6]:
ASR=sparse_model["ASR"]
TRS=sparse_model["TRS"]
LABEL=sparse_model["LABEL"]
db["ASR_SPARSE"]=ASR
db["TRS_SPARSE"]=TRS
db["LABEL"]=LABEL
print "todo label"
def select(elm):
return int(elm.split("_")[-1])
#z.apply(select)
label_bin={}
lb = preprocessing.LabelBinarizer(neg_label=0)
lb.fit(LABEL["TRAIN"].apply(select))
for i in ASR.keys():
label_bin=lb.transform(LABEL[i].apply(select))
hidden_size=795
hidden_size2=530
input_activation="tanh"
out_activation="tanh"
loss="mse"
epochs=15
batch=4
patience=10
w1_size=2048
w2_size=3096
sgd = Adam(lr=0.0001)#SGD(lr=0.00001,nesterov=False) #'rmsprop'# Adam(lr=0.00001)#SGD(lr=0.001, momentum=0.9, nesterov=True)
try :
sgd_repr=sgd.get_config()
except AttributeError :
sgd_repr=sgd
json.dump({ "h1" : hidden_size,
"h2": hidden_size2,
"w1" : w1_size,
"w2" : w2_size,
"inside_activation" : input_activation,
"out_activation" : out_activation,
"loss" : loss,
"epochs" : epochs ,
"batch_size" : batch,
"patience" : patience,
"sgd" : sgd_repr},
open("{}.json".format(sys.argv[2]),"w"),
indent=4)
print "gogo autoencoder ASR"
autoencode=Sequential()
autoencode.add(Dense(hidden_size,input_dim=ASR["TRAIN"].shape[1],init='glorot_uniform',activation=input_activation))
autoencode.add(Dense(hidden_size2,input_dim=hidden_size,init='glorot_uniform',activation=input_activation))
autoencode.add(Dense(hidden_size,input_dim=hidden_size2,init="glorot_uniform",activation=out_activation))
autoencode.add(Dense(ASR["DEV"].todense().shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation))
#autoencode.compile(optimizer=sgd,loss=loss)
autoencode.compile(optimizer=sgd,loss=loss)
# In[ ]:
autoencode.fit(ASR["TRAIN"].todense(),ASR["TRAIN"].todense(),
nb_epoch=epochs,batch_size=batch,
callbacks=
[keras.callbacks.EarlyStopping(monitor='val_loss',patience=patience, verbose=0)], validation_data=(ASR["DEV"].todense(),ASR["DEV"].todense()),verbose=1)
# In[ ]:
auto_decoder=Sequential()
auto_decoder.add(Dense(hidden_size,input_dim=ASR["DEV"].todense().shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2]))
auto_decoder.add(Dense(hidden_size2,input_dim=hidden_size,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[2:4]))
auto_decoder.add(Dense(hidden_size,input_dim=hidden_size2,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[4:6]))
auto_decoder.compile(optimizer=sgd,loss=loss)
# In[77]:
#autoencode.predict(ASR["DEV"].todense())
# In[ ]:
print "auto encoder et auto decoder asr okay"
ASR_AE_H2={}
for i in ASR.keys():
ASR_AE_H2[i]=auto_decoder.predict(ASR[i].todense())
#TRS[i]=dico.transform(TRS[i][2])
db["ASR_AE_H2"]=ASR_AE_H2
auto_decoder=Sequential()
auto_decoder.add(Dense(hidden_size,input_dim=ASR["DEV"].todense().shape[1],init='uniform',activation=input_activation,weights=autoencode.get_weights()[:2]))
auto_decoder.add(Dense(hidden_size2,input_dim=hidden_size,init='glorot_uniform',activation=input_activation,weights=autoencode.get_weights()[2:4]))
auto_decoder.compile(optimizer=sgd,loss=loss)
ASR_AE_H1={}
for i in ASR.keys():
ASR_AE_H1[i]=auto_decoder.predict(ASR[i].todense())
#TRS[i]=dico.transform(TRS[i][2])
db["ASR_AE_H1"]=ASR_AE_H1
print "auto encoder trs learning"
# In[68]:/
sgd_trs = SGD(lr=0.1,momentum=0.9)
autoencode_trs=Sequential()
autoencode_trs.add(Dense(hidden_size,input_dim=TRS["DEV"].todense().shape[1],init='glorot_uniform',activation=input_activation))
autoencode_trs.add(Dense(hidden_size2,input_dim=hidden_size,init='glorot_uniform',activation=input_activation))
autoencode_trs.add(Dense(hidden_size,input_dim=hidden_size2,init="glorot_uniform",activation=out_activation))
autoencode_trs.add(Dense(TRS["DEV"].todense().shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation))
#autoencode_trs.compile(optimizer=sgd_trs,loss=loss)
autoencode_trs.compile(optimizer=sgd,loss=loss)
# In[69]:
autoencode_trs.fit(TRS["TRAIN"].todense(),TRS["TRAIN"].todense(),nb_epoch=epochs,batch_size=batch,
callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
patience=patience, verbose=0)],
validation_data=(TRS["DEV"].todense(),TRS["DEV"].todense()),verbose=1)
# In[87]:
auto_decoder_trs=Sequential()
auto_decoder_trs.add(Dense(hidden_size,input_dim=ASR["DEV"].todense().shape[1],activation=input_activation,weights=autoencode_trs.get_weights()[:2]))
auto_decoder_trs.add(Dense(hidden_size2,input_dim=hidden_size,activation=input_activation,weights=autoencode_trs.get_weights()[2:4]))
auto_decoder_trs.add(Dense(hidden_size,input_dim=hidden_size2,activation=input_activation,weights=autoencode_trs.get_weights()[4:6]))
auto_decoder_trs.compile(optimizer=sgd,loss=loss)
# In[88]:
print "auto encoder trs okay"
TRS_AE_H2={}
for i in TRS.keys():
TRS_AE_H2[i]=auto_decoder_trs.predict(TRS[i].todense())
#TRS[i]=dico.transform(TRS[i][2])
db["TRS_AE_H2"]=TRS_AE_H2
auto_decoder_trs=Sequential()
auto_decoder_trs.add(Dense(hidden_size,input_dim=ASR["DEV"].todense().shape[1],activation=input_activation,weights=autoencode_trs.get_weights()[:2]))
auto_decoder_trs.add(Dense(hidden_size2,input_dim=hidden_size,activation=input_activation,weights=autoencode_trs.get_weights()[2:4]))
auto_decoder_trs.compile(optimizer=sgd,loss=loss)
# In[88]:
print "auto encoder trs okay"
TRS_AE_H1={}
for i in TRS.keys():
TRS_AE_H1[i]=auto_decoder_trs.predict(TRS[i].todense())
#TRS[i]=dico.transform(TRS[i][2])
db["TRS_AE_H1"]=TRS_AE_H1
db.sync()
# In[261]:
#pred_dev= model_TRS_AE.predict(TRS_AE["DEV"],batch_size=1)
TRS_AE={}
ASR_AE={}
for i in TRS.keys():
TRS_AE[i]=autoencode_trs.predict(TRS[i].todense())
ASR_AE[i]=autoencode.predict(ASR[i].todense())
db["TRS_AE_OUT"]=TRS_AE
db["ASR_AE_OUT"]=ASR_AE
db.sync()
# # Transfert de couche
# ICI
# In[138]:
print "learn transform ae H2({})".format(hidden_size)
model_TRANS = Sequential()
model_TRANS.add(Dense( w1_size,input_dim=hidden_size, init='glorot_uniform', activation='relu'))
#model_TRANS.add(Dropout(0.5))
model_TRANS.add(Dense( w2_size,input_dim=w1_size, init='glorot_uniform', activation='relu'))
#model_TRANS.add(Dropout(0.5))
model_TRANS.add(Dense( hidden_size,input_dim=w2_size, init='glorot_uniform', activation='relu'))
sgd_TRANS = SGD(lr=0.01, decay=1e-4, momentum=0.9, nesterov=True)
#model_TRANS.compile(loss='mse', optimizer=sgd_TRANS)
model_TRANS.compile(loss='mse', optimizer=sgd)
# In[146]:
model_TRANS.fit(ASR_AE_H2["TRAIN"],TRS_AE_H2["TRAIN"],nb_epoch=epochs,batch_size=batch,
callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
patience=patience, verbose=0)],
validation_data=(ASR_AE_H2["DEV"],TRS_AE_H2["DEV"]),verbose=1)
# In[140]:
print "make trans projection H2"
asr_transformer={}
for i in ASR_AE.keys():
asr_transformer[i]=model_TRANS.predict(ASR_AE_H2[i])
db["ASR_H2_TRANFORMED_TRSH2"]=asr_transformer
# In[ ]:
db.sync()
auto_decoder_trans=Sequential()
auto_decoder_trans.add(Dense(w1_size,input_dim=hidden_size,activation=input_activation,weights=model_TRANS.get_weights()[:2]))
auto_decoder_trans.compile(optimizer=sgd,loss=loss)
asr_trans_w1={}
for i in ASR_AE.keys():
asr_trans_w1[i]=auto_decoder_trans.predict(ASR_AE_H2[i])
db["ASR_H2_TRANSFORMED_W1"]=asr_trans_w1
print "shape",ASR_AE["TRAIN"].shape[1]
auto_decoder_trans=Sequential()
auto_decoder_trans.add(Dense(w1_size,input_dim=hidden_size,activation=input_activation,weights=model_TRANS.get_weights()[:2]))
auto_decoder_trans.add(Dense(w2_size,input_dim=w1_size,activation=input_activation,weights=model_TRANS.get_weights()[2:4]))
auto_decoder_trans.compile(optimizer=sgd,loss=loss)
asr_trans_w2={}
for i in ASR_AE.keys():
asr_trans_w2[i]=auto_decoder_trans.predict(ASR_AE_H2[i])
db["ASR_H2_TRANSFORMED_W2"]=asr_trans_w2
model_TRANS_H2_OUT = Sequential()
model_TRANS_H2_OUT.add(Dense(TRS["DEV"].todense().shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation,weights=autoencode_trs.get_weights()[-2:]))
sgd_out = SGD(lr=0.01, decay=1e-4, momentum=0.9, nesterov=True)
model_TRANS_H2_OUT.compile(loss='mse', optimizer=sgd)
asr_tranform_out={}
for i in ASR_AE.keys():
asr_tranform_out[i]=model_TRANS_H2_OUT.predict(asr_transformer[i])
db["ASR_H2_TRANFORMED_OUT"]=asr_tranform_out
db.sync()
print "learn transform ae H1({})".format(hidden_size2)
model_TRANS = Sequential()
model_TRANS.add(Dense( w1_size,input_dim=hidden_size2, init='glorot_uniform', activation=input_activation))
#model_TRANS.add(Dropout(0.5))
model_TRANS.add(Dense( w2_size,input_dim=w1_size, init='glorot_uniform', activation=input_activation))
#model_TRANS.add(Dropout(0.5))
model_TRANS.add(Dense( hidden_size2,input_dim=w2_size, init='glorot_uniform', activation=input_activation))
sgd_TRANS = SGD(lr=0.01, decay=1e-4, momentum=0.9, nesterov=True)
model_TRANS.compile(loss='mse', optimizer=sgd)
# In[146]:
model_TRANS.fit(ASR_AE_H1["TRAIN"],TRS_AE_H1["TRAIN"],nb_epoch=epochs,batch_size=batch,
callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss',
patience=patience, verbose=0)],
validation_data=(ASR_AE_H1["DEV"],TRS_AE_H1["DEV"]),verbose=1)
print "make trans projection H1"
asr_transformer_H1={}
for i in ASR_AE.keys():
asr_transformer_H1[i]=model_TRANS.predict(ASR_AE_H1[i])
db["ASR_H1_TRANFORMED_TRSH2"]=asr_transformer_H1
# In[ ]:
db.sync()
auto_decoder_trans=Sequential()
auto_decoder_trans.add(Dense(w1_size,input_dim=hidden_size2,activation=input_activation,weights=model_TRANS.get_weights()[:2]))
auto_decoder_trans.compile(optimizer=sgd,loss=loss)
asr_trans_H1_w1={}
for i in ASR_AE.keys():
asr_trans_H1_w1[i]=auto_decoder_trans.predict(ASR_AE_H1[i])
db["ASR_H1_TRANSFORMED_W1"]=asr_trans_w1
auto_decoder_trans=Sequential()
auto_decoder_trans.add(Dense(w1_size,input_dim=hidden_size2,activation=input_activation,weights=model_TRANS.get_weights()[:2]))
auto_decoder_trans.add(Dense(w2_size,input_dim=w1_size,activation=input_activation,weights=model_TRANS.get_weights()[2:4]))
auto_decoder_trans.compile(optimizer=sgd,loss=loss)
asr_trans_H1_w2={}
for i in ASR_AE.keys():
asr_trans_H1_w2[i]=auto_decoder_trans.predict(ASR_AE_H1[i])
db["ASR_H1_TRANSFORMED_W2"]=asr_trans_H1_w2
model_TRANS_H2_OUT = Sequential()
model_TRANS_H2_OUT.add(Dense(hidden_size,input_dim=hidden_size2,init="glorot_uniform",activation=out_activation,weights=autoencode_trs.get_weights()[-4:-2]))
model_TRANS_H2_OUT.add(Dense(TRS["TRAIN"].shape[1],input_dim=hidden_size,init="glorot_uniform",activation=out_activation,weights=autoencode_trs.get_weights()[-2:]))
sgd_out = SGD(lr=0.01, decay=1e-4, momentum=0.9, nesterov=True)
model_TRANS_H2_OUT.compile(loss='mse', optimizer=sgd)
asr_tranform_H1_out={}
for i in ASR_AE.keys():
asr_tranform_H1_out[i]=model_TRANS_H2_OUT.predict(asr_transformer_H1[i])
db["ASR_H1_TRANFORMED_OUT"]=asr_tranform_out
db.sync()
db.close()