Commit 91aeb914f7a4a592c9645fb28e6f39f9a73116df
1 parent
d1012a7a16
Exists in
master
add Botttleneck MLp
Showing 1 changed file with 120 additions and 6 deletions Side-by-side Diff
LDA/mlp.py
... | ... | @@ -6,13 +6,15 @@ |
6 | 6 | from keras.models import Sequential |
7 | 7 | from keras.layers import Input, Dense, Dropout |
8 | 8 | from keras.models import Model |
9 | +from keras.callbacks import ModelCheckpoint, EarlyStopping | |
9 | 10 | from keras.utils.layer_utils import layer_from_config |
10 | 11 | from itertools import izip_longest |
11 | - | |
12 | +import tempfile | |
13 | +import shutil | |
12 | 14 | import pandas |
13 | 15 | from collections import namedtuple |
14 | 16 | from sklearn.metrics import accuracy_score as perf |
15 | -save_tuple= namedtuple("save_tuple",["pred_train","pred_dev","pred_test"]) | |
17 | +save_tuple = namedtuple("save_tuple",["pred_train","pred_dev","pred_test"]) | |
16 | 18 | |
17 | 19 | |
18 | 20 | def ft_dsae(train,dev,test, |
19 | 21 | |
... | ... | @@ -74,12 +76,114 @@ |
74 | 76 | layers.append(Dense(y_train.shape[1],activation=output_activation)(layers[-1])) |
75 | 77 | models = [Model(input=layers[0] , output=x) for x in layers[1:]] |
76 | 78 | models[-1].compile(optimizer=sgd,loss=loss) |
77 | - models[-1].fit(train,y_train,nb_epoch=epochs,batch_size=batch_size,callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(dev,dev),verbose=verbose) | |
79 | + models[-1].fit(train,y_train,nb_epoch=epochs,batch_size=batch_size,callbacks=[EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(dev,dev),verbose=verbose) | |
78 | 80 | predictions = [ [x.predict(y) for y in param_predict ] for x in models ] |
79 | 81 | pred_by_level.append(predictions) |
80 | 82 | |
81 | 83 | return pred_by_level |
82 | 84 | |
85 | +def train_mlp_proj(x_train,y_train,x_dev,y_dev,x_test,y_test,hidden_size,input_activation="relu",hidden_activation="relu",output_activation="softmax",loss="mse",init="glorot_uniform",dropouts=None,sgd=None,epochs=1200,batch_size=16,fit_verbose=1,patience=20,test_verbose=0): | |
86 | + | |
87 | + #model_tempfile=tempfile.mkstemp() | |
88 | + tempfold = tempfile.mkdtemp() | |
89 | + model_tempfile= tempfold+"/model.hdf" | |
90 | + | |
91 | + layers = [Input(shape=(x_train.shape[1],))] | |
92 | + | |
93 | + for h in hidden_size: | |
94 | + print h | |
95 | + if dropouts: | |
96 | + d = dropouts.pop(0) | |
97 | + if d > 0 : | |
98 | + ldo = Dropout(d)(layers[-1]) | |
99 | + print 'append' | |
100 | + layers.append(Dense(h,init=init,activation=input_activation)(ldo)) | |
101 | + else : | |
102 | + print " append" | |
103 | + layers.append(Dense(h,init=init,activation=input_activation)(layers[-1])) | |
104 | + | |
105 | + | |
106 | + if dropouts: | |
107 | + d = dropouts.pop(0) | |
108 | + if d > 0 : | |
109 | + ldo =Dropout(d)(layers[-1]) | |
110 | + print "end" | |
111 | + layers.append(Dense( y_train.shape[1],activation=output_activation,init=init)(ldo)) | |
112 | + else: | |
113 | + print "end" | |
114 | + layers.append(Dense( y_train.shape[1],activation=output_activation,init=init)(layers[-1])) | |
115 | + | |
116 | + models = [] | |
117 | + for l in layers[1:] : | |
118 | + models.append(Model(layers[0] , l)) | |
119 | + print "nb models : ", len(models), "h :",hidden_size , "layer", len(layers) | |
120 | + if not sgd: | |
121 | + sgd = SGD(lr=0.01, decay=0, momentum=0.9) | |
122 | + | |
123 | + models[-1].compile(loss=loss, optimizer=sgd,metrics=['accuracy']) | |
124 | + callbacks = [ModelCheckpoint(model_tempfile, monitor='val_acc', verbose=test_verbose, save_best_only=True, save_weights_only=True, mode='auto'), | |
125 | + EarlyStopping(monitor='val_acc', patience=patience, verbose=test_verbose) ] # On pourrai essayer avec la loss aussi | |
126 | + print models[-1].summary() | |
127 | + hist=models[-1].fit(x_train, y_train, nb_epoch=epochs, batch_size=batch_size,verbose=fit_verbose,validation_data=(x_dev,y_dev),callbacks=callbacks) | |
128 | + models[-1].load_weights(model_tempfile, by_name=False) | |
129 | + proj = [] | |
130 | + for layer,model in enumerate(models): | |
131 | + proj.append((model.predict(x_train),model.predict(x_dev),model.predict(x_test))) | |
132 | + | |
133 | + shutil.rmtree(tempfold) | |
134 | + return models[-1].summary(),proj | |
135 | + | |
136 | + | |
137 | + | |
138 | + | |
139 | + | |
140 | +def train_mlp_pred(x_train,y_train,x_dev,y_dev,x_test,y_test,hidden_size,input_activation="relu",hidden_activation="relu",output_activation="softmax",loss="mse",init="glorot_uniform",dropouts=None,sgd=None,epochs=1200,batch_size=16,fit_verbose=1,patience=20,test_verbose=0): | |
141 | + | |
142 | + #model_tempfile=tempfile.mkstemp() | |
143 | + tempfold = tempfile.mkdtemp() | |
144 | + model_tempfile= tempfold+"/model.hdf" | |
145 | + | |
146 | + layers = [Input(shape=(x_train.shape[1],))] | |
147 | + | |
148 | + for h in hidden_size: | |
149 | + if dropouts: | |
150 | + d = dropouts.pop(0) | |
151 | + if d > 0 : | |
152 | + ldo = Dropout(d)(layers[-1]) | |
153 | + layers.append(Dense(h,init=init,activation=input_activation)(ldo)) | |
154 | + else : | |
155 | + layers.append(Dense(h,init=init,activation=input_activation)(layers[-1])) | |
156 | + | |
157 | + | |
158 | + if dropouts: | |
159 | + d = dropouts.pop(0) | |
160 | + if d > 0 : | |
161 | + ldo =Dropout(d)(layers[-1]) | |
162 | + layers.append(Dense( y_train.shape[1],activation=output_activation,init=init)(ldo)) | |
163 | + else: | |
164 | + layers.append(Dense( y_train.shape[1],activation=output_activation,init=init)(layers[-1])) | |
165 | + | |
166 | + model=Model(layers[0] , layers[-1]) | |
167 | + if not sgd: | |
168 | + sgd = SGD(lr=0.01, decay=0, momentum=0.9) | |
169 | + | |
170 | + model.compile(loss=loss, optimizer=sgd,metrics=['accuracy']) | |
171 | + callbacks = [ModelCheckpoint(model_tempfile, monitor='val_acc', verbose=test_verbose, save_best_only=True, save_weights_only=True, mode='auto'), | |
172 | + EarlyStopping(monitor='val_acc', patience=patience, verbose=test_verbose) ] # On pourrai essayer avec la loss aussi | |
173 | + print model.summary() | |
174 | + hist=model.fit(x_train, y_train, nb_epoch=epochs, batch_size=batch_size,verbose=fit_verbose,validation_data=(x_dev,y_dev),callbacks=callbacks) | |
175 | + model.load_weights(model_tempfile, by_name=False) | |
176 | + pred=(model.predict(x_train),model.predict(x_dev),model.predict(x_test)) | |
177 | + | |
178 | + shutil.rmtree(tempfold) | |
179 | + return pred,hist | |
180 | + | |
181 | + | |
182 | + | |
183 | + | |
184 | + | |
185 | + | |
186 | + | |
83 | 187 | def train_mlp(x_train,y_train,x_dev,y_dev,x_test,y_test,hidden_size,input_activation="relu",hidden_activation="relu",output_activation="softmax",loss="mse",init="glorot_uniform",dropouts=None,sgd=None,epochs=1200,batch_size=16,fit_verbose=1,test_verbose=0,save_pred=False,keep_histo=False): |
84 | 188 | |
85 | 189 | layers = [Input(shape=(x_train.shape[1],))] |
... | ... | @@ -107,7 +211,7 @@ |
107 | 211 | d = dropouts.pop(0) |
108 | 212 | if d > 0 : |
109 | 213 | layers.append(Dropout(d)(layers[-1])) |
110 | - | |
214 | + print y_train[2:10] | |
111 | 215 | layers.append(Dense( y_train.shape[1],activation=output_activation,init=init)(layers[-1])) |
112 | 216 | |
113 | 217 | model = Model(layers[0] , layers[-1]) |
... | ... | @@ -147,7 +251,7 @@ |
147 | 251 | res.append(hist) |
148 | 252 | return res |
149 | 253 | |
150 | -def train_ae(train,dev,test,hidden_sizes,y_train=None,y_dev=None,y_test=None,dropouts=None,input_activation="tanh",output_activation="tanh",loss="mse",sgd=None,epochs=500,batch_size=8,verbose=1,patience=20,get_weights=False,set_weights=[]): | |
254 | +def train_ae(train,dev,test,hidden_sizes,y_train=None,y_dev=None,y_test=None,dropouts=None,input_activation="tanh",output_activation="tanh",loss="mse",sgd=None,epochs=500,batch_size=8,test_verbose=0,verbose=1,patience=20,get_weights=False,set_weights=[],best_mod=False): | |
151 | 255 | |
152 | 256 | input_vect = Input(shape=(train.shape[1],)) |
153 | 257 | |
... | ... | @@ -193,7 +297,17 @@ |
193 | 297 | models = [Model(input=previous[0] , output=x) for x in previous[1:]] |
194 | 298 | print "MLP", sgd, loss |
195 | 299 | models[-1].compile(optimizer=sgd,loss=loss) |
196 | - models[-1].fit(train,y_train,nb_epoch=epochs,batch_size=batch_size,callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)],validation_data=(dev,dev),verbose=verbose) | |
300 | + cb = [EarlyStopping(monitor='val_loss', patience=patience, verbose=0)] | |
301 | + if best_mod: | |
302 | + tempfold = tempfile.mkdtemp() | |
303 | + model_tempfile= tempfold+"/model.hdf" | |
304 | + cb.append( ModelCheckpoint(model_tempfile, monitor='val_loss', verbose=test_verbose, save_best_only=True, save_weights_only=True, mode='auto') ) | |
305 | + | |
306 | + models[-1].summary() | |
307 | + models[-1].fit(train,y_train,nb_epoch=epochs,batch_size=batch_size,callbacks=cb,validation_data=(dev,dev),verbose=verbose) | |
308 | + if best_mod: | |
309 | + models[-1].load_weights(model_tempfile) | |
310 | + shutil.rmtree(tempfold) | |
197 | 311 | param_predict = [ train, dev, test ] |
198 | 312 | if predict_y : |
199 | 313 | param_predict += [ y_train, y_dev ,y_test ] |