Blame view
datasets/transformers.py
13.3 KB
f2d3bd141 Initial commit wi... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
from collections import OrderedDict import numpy from theano import config from fuel.transformers import Transformer from picklable_itertools.extras import equizip class MaximumFrameCache(Transformer): """Cache examples, and create batches of maximum number of frames. Given a data stream which reads large chunks of data, this data stream caches these chunks and returns batches with a maximum number of acoustic frames. Parameters ---------- max_frames : int maximum number of frames per batch Attributes ---------- cache : list of lists of objects This attribute holds the cache at any given point. It is a list of the same size as the :attr:`sources` attribute. Each element in this list is a deque of examples that are currently in the cache. The cache gets emptied at the start of each epoch, and gets refilled when needed through the :meth:`get_data` method. """ def __init__(self, data_stream, max_frames, rng): super(MaximumFrameCache, self).__init__( data_stream) self.max_frames = max_frames self.cache = OrderedDict([(name, []) for name in self.sources]) self.num_frames = [] self.rng = rng self.produces_examples = False def next_request(self): curr_max = 0 for i, n_frames in enumerate(self.num_frames): # Select max number of frames because of future padding curr_max = max(n_frames, curr_max) total = curr_max * (i + 1) if total >= self.max_frames: return i + 1 return len(self.num_frames) def get_data(self, request=None): if not self.cache[self.cache.keys()[0]]: self._cache() data = [] request = self.next_request() for source_name in self.cache: data.append(numpy.asarray(self.cache[source_name][:request])) self.cache = OrderedDict([(name, dt[request:]) for name, dt in self.cache.iteritems()]) self.num_frames = self.num_frames[request:] return tuple(data) def get_epoch_iterator(self, **kwargs): self.cache = OrderedDict([(name, []) for name in self.sources]) self.num_frames = [] return super(MaximumFrameCache, self).get_epoch_iterator(**kwargs) def _cache(self): data = next(self.child_epoch_iterator) indexes = range(len(data[0])) self.rng.shuffle(indexes) data = [[dt[i] for i in indexes] for dt in data] self.cache = OrderedDict([(name, self.cache[name] + dt) for name, dt in equizip(self.data_stream.sources, data)]) self.num_frames.extend([x.shape[0] for x in data[0]]) class Transpose(Transformer): """Transpose axes of datastream. """ def __init__(self, datastream, axes_list): super(Transpose, self).__init__(datastream) self.axes_list = axes_list self.produces_examples = False def get_data(self, request=None): data = next(self.child_epoch_iterator) transposed_data = [] for axes, data in zip(self.axes_list, data): transposed_data.append(numpy.transpose(data, axes)) return transposed_data class AddUniformAlignmentMask(Transformer): """Adds an uniform alignment mask to the incoming batch. Parameters ---------- """ def __init__(self, data_stream): super(AddUniformAlignmentMask, self).__init__(data_stream) self.sources = self.data_stream.sources + ('alignment',) def get_data(self, request=None): data = next(self.child_epoch_iterator) sources = self.data_stream.sources x_idx = sources.index('x') y_idx = sources.index('y') x_mask_idx = sources.index('x_mask') y_mask_idx = sources.index('y_mask') batch_size = data[x_idx].shape[1] max_len_output = data[y_idx].shape[0] max_len_input = data[x_idx].shape[0] mask_shape = (max_len_output, batch_size, max_len_input) alignment = numpy.zeros(mask_shape, dtype=config.floatX) for k in xrange(batch_size): in_size = numpy.count_nonzero(data[x_mask_idx][:,k]) out_size = numpy.count_nonzero(data[y_mask_idx][:,k]) n = int(in_size/out_size) # Maybe clever way than int to do this v = numpy.hstack([numpy.ones(n, dtype=config.floatX), numpy.zeros(max_len_input - n, dtype=config.floatX)]) alignment[0,k] = v for i in xrange(1, out_size): alignment[i,k] = numpy.roll(v, i*n) # DEBUG #plt.figure() #plt.imshow(alignment[:,k,:], cmap='gray', interpolation='none') #plt.show() data = data + (alignment,) return data class AlignmentPadding(Transformer): def __init__(self, data_stream, alignment_source): super(AlignmentPadding, self).__init__(data_stream) self.alignment_source = alignment_source def get_data(self, request=None): data = next(self.child_epoch_iterator) data = OrderedDict(equizip(self.sources, data)) alignments = data[self.alignment_source] input_lengths = [alignment.shape[1] for alignment in alignments] output_lengths = [alignment.shape[0] for alignment in alignments] max_input_length = max(input_lengths) max_output_length = max(output_lengths) batch_size = len(alignments) padded_alignments = numpy.zeros((max_output_length, batch_size, max_input_length)) padded_targets = numpy.zeros((batch_size, max_output_length)) padded_targets_mask = numpy.zeros((batch_size, max_output_length)) for i, alignment in enumerate(alignments): out_size, inp_size = alignment.shape padded_alignments[:out_size, i, :inp_size] = alignment alignment_index = [list(align).index(1) for align in alignment] occurance = [alignment_index.count(j) for j in set(alignment_index)] alignment_target = data['phonemes'][i][alignment_index] padded_targets[i, :out_size] = alignment_target #get rid of start label padded_targets[i, 0] = data['phonemes'][i, 1] alignment_target_mask = sum([[occur]*num for occur, num in zip(data['phonemes_mask'][i], occurance)], []) padded_targets_mask[i, :out_size] = alignment_target_mask data[self.alignment_source] = padded_alignments data['phonemes'] = padded_targets.astype('int') data['phonemes_mask'] = padded_targets_mask return data.values() class Reshape(Transformer): """Reshapes data in the stream according to shape source.""" def __init__(self, data_source, shape_source, **kwargs): super(Reshape, self).__init__(**kwargs) self.data_source = data_source self.shape_source = shape_source self.sources = tuple(source for source in self.data_stream.sources if source != shape_source) def get_data(self, request=None): data = next(self.child_epoch_iterator) data = OrderedDict(zip(self.data_stream.sources, data)) shapes = data.pop(self.shape_source) reshaped_data = [] for dt, shape in zip(data[self.data_source], shapes): reshaped_data.append(dt.reshape(shape)) data[self.data_source] = reshaped_data return data.values() class ConvReshape(Transformer): def __init__(self, data_source, quaternion, **kwargs): super(ConvReshape, self).__init__(**kwargs) self.data_source = data_source self.sources = tuple(source for source in self.data_stream.sources) self.quaternion = quaternion def get_data(self, request=None): data = next(self.child_epoch_iterator) data = OrderedDict(zip(self.data_stream.sources, data)) #shapes = data.pop(self.shape_source) reshaped_data = [] if self.data_source in ['features', 'X']: for dt in data[self.data_source]: shape = (1, dt.shape[0], 3, dt.shape[1] / 3) if self.quaternion: empty_channel = numpy.zeros((1, shape[1], 1, shape[3])) reshaped_data.append(numpy.concatenate([dt.reshape(shape), empty_channel], axis=2)) else: reshaped_data.append(dt.reshape(shape)) else: for dt in data[self.data_source]: shape = (numpy.prod(dt.shape), 1) reshaped_data.append(dt.reshape(shape)) if len(reshaped_data) == 1: reshaped_data = reshaped_data * 2 data['phonemes'] = numpy.repeat(data['phonemes'], 2, axis=0) data['features_mask'] = numpy.repeat(data['features_mask'], 2, axis=1) data['phonemes_mask'] = numpy.repeat(data['phonemes_mask'], 2, axis=1) data[self.data_source] = numpy.vstack(reshaped_data) # remove the start label data['phonemes'] = data['phonemes'][:, 1:] # get the indice starts at 0 data['phonemes'] = data['phonemes'] - 1. # remove the end label data['phonemes'][data['phonemes']==61] = 0 # recover original padding data['phonemes'][data['phonemes']==-1] = 0 data['features_mask'] = numpy.sum(data['features_mask'], axis=0)[:, None] data['phonemes_mask'] = numpy.sum(data['phonemes_mask'], axis=0)[:, None] - 2 return data.values() class DictRep(Transformer): def __init__(self, data_source): super(DictRep, self).__init__(data_source) self.data_source = data_source def get_data(self, request=None): data = next(self.child_epoch_iterator) data = OrderedDict(zip(self.data_stream.sources, data)) return (data.values(), numpy.zeros([data['phonemes_mask'].shape[0]])) class Subsample(Transformer): def __init__(self, data_stream, source, step): super(Subsample, self).__init__(data_stream) self.source = source self.step = step def get_data(self, request=None): data = next(self.child_epoch_iterator) data = OrderedDict(equizip(self.sources, data)) dt = data[self.source] indexes = ((slice(None, None, self.step),) + (slice(None),) * (len(dt.shape) - 1)) subsampled = dt[indexes] data[self.source] = subsampled return data.values() class WindowFeatures(Transformer): def __init__(self, data_stream, source, window_size): super(WindowFeatures, self).__init__(data_stream) self.source = source self.window_size = window_size def get_data(self, request=None): data = next(self.child_epoch_iterator) data = OrderedDict(equizip(self.sources, data)) feature_batch = data[self.source] windowed_features = [] for features in feature_batch: features_padded = features.copy() features_shifted = [features] # shift forward for i in xrange(self.window_size / 2): feats = numpy.roll(features_padded, i + 1, axis=0) feats[:i + 1, :] = 0 features_shifted.append(feats) features_padded = features.copy() # shift backward for i in xrange(self.window_size / 2): feats = numpy.roll(features_padded, -i - 1, axis=0) feats[-i - 1:, :] = 0 features_shifted.append(numpy.roll(features_padded, -i - 1, axis=0)) windowed_features.append(numpy.concatenate( features_shifted, axis=1)) data[self.source] = windowed_features return data.values() class Normalize(Transformer): """Normalizes each features : x = (x - means)/stds""" def __init__(self, data_stream, means, stds, over='features'): super(Normalize, self).__init__(data_stream) self.means = means self.stds = stds self.over = over self.produces_examples = False def get_data(self, request=None): data = next(self.child_epoch_iterator) data = OrderedDict(zip(self.data_stream.sources, data)) for i in range(len(data[self.over])): data[self.over][i] -= self.means data[self.over][i] /= self.stds return data.values() def length_getter(dt): def get_length(k): return dt[k].shape[0] return get_length class SortByLegth(Transformer): def __init__(self, data_stream, source='features'): super(SortByLegth, self).__init__(data_stream) self.source = source def get_data(self, request=None): data = next(self.child_epoch_iterator) data = OrderedDict(zip(self.data_stream.sources, data)) dt = data[self.source] indexes = sorted(range(len(dt)), key=length_getter(dt)) for source in self.sources: data[source] = [data[source][k] for k in indexes] return data.values() |