Blame view
build/lib.linux-x86_64-2.7/complexnn/dense.py
8.89 KB
f2d3bd141 Initial commit wi... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Authors: Chiheb Trabelsi # from keras import backend as K import sys; sys.path.append('.') from keras import backend as K from keras import activations, initializers, regularizers, constraints from keras.layers import Layer, InputSpec import numpy as np from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams class ComplexDense(Layer): """Regular complex densely-connected NN layer. `Dense` implements the operation: `real_preact = dot(real_input, real_kernel) - dot(imag_input, imag_kernel)` `imag_preact = dot(real_input, imag_kernel) + dot(imag_input, real_kernel)` `output = activation(K.concatenate([real_preact, imag_preact]) + bias)` where `activation` is the element-wise activation function passed as the `activation` argument, `kernel` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only applicable if `use_bias` is `True`). Note: if the input to the layer has a rank greater than 2, then AN ERROR MESSAGE IS PRINTED. # Arguments units: Positive integer, dimensionality of each of the real part and the imaginary part. It is actualy the number of complex units. activation: Activation function to use (see keras.activations). If you don't specify anything, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the complex `kernel` weights matrix. By default it is 'complex'. and the usual initializers could also be used. (see keras.initializers and init.py). bias_initializer: Initializer for the bias vector (see keras.initializers). kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see keras.regularizers). bias_regularizer: Regularizer function applied to the bias vector (see keras.regularizers). activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see keras.regularizers). kernel_constraint: Constraint function applied to the kernel matrix (see keras.constraints). bias_constraint: Constraint function applied to the bias vector (see keras.constraints). # Input shape a 2D input with shape `(batch_size, input_dim)`. # Output shape For a 2D input with shape `(batch_size, input_dim)`, the output would have shape `(batch_size, units)`. """ def __init__(self, units, activation=None, use_bias=True, init_criterion='he', kernel_initializer='complex', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, seed=None, **kwargs): if 'input_shape' not in kwargs and 'input_dim' in kwargs: kwargs['input_shape'] = (kwargs.pop('input_dim'),) super(ComplexDense, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.use_bias = use_bias self.init_criterion = init_criterion if kernel_initializer in {'complex'}: self.kernel_initializer = kernel_initializer else: self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) if seed is None: self.seed = np.random.randint(1, 10e6) else: self.seed = seed self.input_spec = InputSpec(ndim=2) self.supports_masking = True def build(self, input_shape): assert len(input_shape) == 2 assert input_shape[-1] % 2 == 0 input_dim = input_shape[-1] // 2 data_format = K.image_data_format() kernel_shape = (input_dim, self.units) fan_in, fan_out = initializers._compute_fans( kernel_shape, data_format=data_format ) if self.init_criterion == 'he': s = K.sqrt(1. / fan_in) elif self.init_criterion == 'glorot': s = K.sqrt(1. / (fan_in + fan_out)) rng = RandomStreams(seed=self.seed) # Equivalent initialization using amplitude phase representation: """modulus = rng.rayleigh(scale=s, size=kernel_shape) phase = rng.uniform(low=-np.pi, high=np.pi, size=kernel_shape) def init_w_real(shape, dtype=None): return modulus * K.cos(phase) def init_w_imag(shape, dtype=None): return modulus * K.sin(phase)""" # Initialization using euclidean representation: def init_w_real(shape, dtype=None): return rng.normal( size=kernel_shape, avg=0, std=s, dtype=dtype ) def init_w_imag(shape, dtype=None): return rng.normal( size=kernel_shape, avg=0, std=s, dtype=dtype ) if self.kernel_initializer in {'complex'}: real_init = init_w_real imag_init = init_w_imag else: real_init = self.kernel_initializer imag_init = self.kernel_initializer self.real_kernel = self.add_weight( shape=kernel_shape, initializer=real_init, name='real_kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint ) self.imag_kernel = self.add_weight( shape=kernel_shape, initializer=imag_init, name='imag_kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint ) if self.use_bias: self.bias = self.add_weight( shape=(2 * self.units,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint ) else: self.bias = None self.input_spec = InputSpec(ndim=2, axes={-1: 2 * input_dim}) self.built = True def call(self, inputs): input_shape = K.shape(inputs) input_dim = input_shape[-1] // 2 real_input = inputs[:, :input_dim] imag_input = inputs[:, input_dim:] cat_kernels_4_real = K.concatenate( [self.real_kernel, -self.imag_kernel], axis=-1 ) cat_kernels_4_imag = K.concatenate( [self.imag_kernel, self.real_kernel], axis=-1 ) cat_kernels_4_complex = K.concatenate( [cat_kernels_4_real, cat_kernels_4_imag], axis=0 ) output = K.dot(inputs, cat_kernels_4_complex) if self.use_bias: output = K.bias_add(output, self.bias) if self.activation is not None: output = self.activation(output) return output def compute_output_shape(self, input_shape): assert input_shape and len(input_shape) == 2 assert input_shape[-1] output_shape = list(input_shape) output_shape[-1] = 2 * self.units return tuple(output_shape) def get_config(self): if self.kernel_initializer in {'complex'}: ki = self.kernel_initializer else: ki = initializers.serialize(self.kernel_initializer) config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'init_criterion': self.init_criterion, 'kernel_initializer': ki, 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'seed': self.seed, } base_config = super(ComplexDense, self).get_config() return dict(list(base_config.items()) + list(config.items())) |