dense.py
8.89 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Authors: Chiheb Trabelsi
#
from keras import backend as K
import sys; sys.path.append('.')
from keras import backend as K
from keras import activations, initializers, regularizers, constraints
from keras.layers import Layer, InputSpec
import numpy as np
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
class ComplexDense(Layer):
"""Regular complex densely-connected NN layer.
`Dense` implements the operation:
`real_preact = dot(real_input, real_kernel) - dot(imag_input, imag_kernel)`
`imag_preact = dot(real_input, imag_kernel) + dot(imag_input, real_kernel)`
`output = activation(K.concatenate([real_preact, imag_preact]) + bias)`
where `activation` is the element-wise activation function
passed as the `activation` argument, `kernel` is a weights matrix
created by the layer, and `bias` is a bias vector created by the layer
(only applicable if `use_bias` is `True`).
Note: if the input to the layer has a rank greater than 2, then
AN ERROR MESSAGE IS PRINTED.
# Arguments
units: Positive integer, dimensionality of each of the real part
and the imaginary part. It is actualy the number of complex units.
activation: Activation function to use
(see keras.activations).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the complex `kernel` weights matrix.
By default it is 'complex'.
and the usual initializers could also be used.
(see keras.initializers and init.py).
bias_initializer: Initializer for the bias vector
(see keras.initializers).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see keras.regularizers).
bias_regularizer: Regularizer function applied to the bias vector
(see keras.regularizers).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see keras.regularizers).
kernel_constraint: Constraint function applied to the kernel matrix
(see keras.constraints).
bias_constraint: Constraint function applied to the bias vector
(see keras.constraints).
# Input shape
a 2D input with shape `(batch_size, input_dim)`.
# Output shape
For a 2D input with shape `(batch_size, input_dim)`,
the output would have shape `(batch_size, units)`.
"""
def __init__(self, units,
activation=None,
use_bias=True,
init_criterion='he',
kernel_initializer='complex',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
seed=None,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(ComplexDense, self).__init__(**kwargs)
self.units = units
self.activation = activations.get(activation)
self.use_bias = use_bias
self.init_criterion = init_criterion
if kernel_initializer in {'complex'}:
self.kernel_initializer = kernel_initializer
else:
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
if seed is None:
self.seed = np.random.randint(1, 10e6)
else:
self.seed = seed
self.input_spec = InputSpec(ndim=2)
self.supports_masking = True
def build(self, input_shape):
assert len(input_shape) == 2
assert input_shape[-1] % 2 == 0
input_dim = input_shape[-1] // 2
data_format = K.image_data_format()
kernel_shape = (input_dim, self.units)
fan_in, fan_out = initializers._compute_fans(
kernel_shape,
data_format=data_format
)
if self.init_criterion == 'he':
s = K.sqrt(1. / fan_in)
elif self.init_criterion == 'glorot':
s = K.sqrt(1. / (fan_in + fan_out))
rng = RandomStreams(seed=self.seed)
# Equivalent initialization using amplitude phase representation:
"""modulus = rng.rayleigh(scale=s, size=kernel_shape)
phase = rng.uniform(low=-np.pi, high=np.pi, size=kernel_shape)
def init_w_real(shape, dtype=None):
return modulus * K.cos(phase)
def init_w_imag(shape, dtype=None):
return modulus * K.sin(phase)"""
# Initialization using euclidean representation:
def init_w_real(shape, dtype=None):
return rng.normal(
size=kernel_shape,
avg=0,
std=s,
dtype=dtype
)
def init_w_imag(shape, dtype=None):
return rng.normal(
size=kernel_shape,
avg=0,
std=s,
dtype=dtype
)
if self.kernel_initializer in {'complex'}:
real_init = init_w_real
imag_init = init_w_imag
else:
real_init = self.kernel_initializer
imag_init = self.kernel_initializer
self.real_kernel = self.add_weight(
shape=kernel_shape,
initializer=real_init,
name='real_kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint
)
self.imag_kernel = self.add_weight(
shape=kernel_shape,
initializer=imag_init,
name='imag_kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint
)
if self.use_bias:
self.bias = self.add_weight(
shape=(2 * self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint
)
else:
self.bias = None
self.input_spec = InputSpec(ndim=2, axes={-1: 2 * input_dim})
self.built = True
def call(self, inputs):
input_shape = K.shape(inputs)
input_dim = input_shape[-1] // 2
real_input = inputs[:, :input_dim]
imag_input = inputs[:, input_dim:]
cat_kernels_4_real = K.concatenate(
[self.real_kernel, -self.imag_kernel],
axis=-1
)
cat_kernels_4_imag = K.concatenate(
[self.imag_kernel, self.real_kernel],
axis=-1
)
cat_kernels_4_complex = K.concatenate(
[cat_kernels_4_real, cat_kernels_4_imag],
axis=0
)
output = K.dot(inputs, cat_kernels_4_complex)
if self.use_bias:
output = K.bias_add(output, self.bias)
if self.activation is not None:
output = self.activation(output)
return output
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) == 2
assert input_shape[-1]
output_shape = list(input_shape)
output_shape[-1] = 2 * self.units
return tuple(output_shape)
def get_config(self):
if self.kernel_initializer in {'complex'}:
ki = self.kernel_initializer
else:
ki = initializers.serialize(self.kernel_initializer)
config = {
'units': self.units,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'init_criterion': self.init_criterion,
'kernel_initializer': ki,
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'activity_regularizer': regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint),
'seed': self.seed,
}
base_config = super(ComplexDense, self).get_config()
return dict(list(base_config.items()) + list(config.items()))