Blame view
build/lib.linux-x86_64-2.7/complexnn/pool.py
4.76 KB
f2d3bd141 Initial commit wi... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Authors: Olexa Bilaniuk # import keras.backend as KB import keras.engine as KE import keras.layers as KL import keras.optimizers as KO import theano as T import theano.ifelse as TI import theano.tensor as TT import theano.tensor.fft as TTF import numpy as np # # Spectral Pooling Layer # class SpectralPooling1D(KL.Layer): def __init__(self, topf=(0,)): super(SpectralPooling1D, self).__init__() if "topf" in kwargs: self.topf = (int (kwargs["topf" ][0]),) self.topf = (self.topf[0]//2,) elif "gamma" in kwargs: self.gamma = (float(kwargs["gamma"][0]),) self.gamma = (self.gamma[0]/2,) else: raise RuntimeError("Must provide either topf= or gamma= !") def call(self, x, mask=None): xshape = x._keras_shape if hasattr(self, "topf"): topf = self.topf else: if KB.image_data_format() == "channels_first": topf = (int(self.gamma[0]*xshape[2]),) else: topf = (int(self.gamma[0]*xshape[1]),) if KB.image_data_format() == "channels_first": if topf[0] > 0 and xshape[2] >= 2*topf[0]: mask = [1]*(topf[0] ) +\ [0]*(xshape[2] - 2*topf[0]) +\ [1]*(topf[0] ) mask = [[mask]] mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,1,2)) mask = KB.constant(mask) x *= mask else: if topf[0] > 0 and xshape[1] >= 2*topf[0]: mask = [1]*(topf[0] ) +\ [0]*(xshape[1] - 2*topf[0]) +\ [1]*(topf[0] ) mask = [[mask]] mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,2,1)) mask = KB.constant(mask) x *= mask return x class SpectralPooling2D(KL.Layer): def __init__(self, **kwargs): super(SpectralPooling2D, self).__init__() if "topf" in kwargs: self.topf = (int (kwargs["topf" ][0]), int (kwargs["topf" ][1])) self.topf = (self.topf[0]//2, self.topf[1]//2) elif "gamma" in kwargs: self.gamma = (float(kwargs["gamma"][0]), float(kwargs["gamma"][1])) self.gamma = (self.gamma[0]/2, self.gamma[1]/2) else: raise RuntimeError("Must provide either topf= or gamma= !") def call(self, x, mask=None): xshape = x._keras_shape if hasattr(self, "topf"): topf = self.topf else: if KB.image_data_format() == "channels_first": topf = (int(self.gamma[0]*xshape[2]), int(self.gamma[1]*xshape[3])) else: topf = (int(self.gamma[0]*xshape[1]), int(self.gamma[1]*xshape[2])) if KB.image_data_format() == "channels_first": if topf[0] > 0 and xshape[2] >= 2*topf[0]: mask = [1]*(topf[0] ) +\ [0]*(xshape[2] - 2*topf[0]) +\ [1]*(topf[0] ) mask = [[[mask]]] mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,1,3,2)) mask = KB.constant(mask) x *= mask if topf[1] > 0 and xshape[3] >= 2*topf[1]: mask = [1]*(topf[1] ) +\ [0]*(xshape[3] - 2*topf[1]) +\ [1]*(topf[1] ) mask = [[[mask]]] mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,1,2,3)) mask = KB.constant(mask) x *= mask else: if topf[0] > 0 and xshape[1] >= 2*topf[0]: mask = [1]*(topf[0] ) +\ [0]*(xshape[1] - 2*topf[0]) +\ [1]*(topf[0] ) mask = [[[mask]]] mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,3,1,2)) mask = KB.constant(mask) x *= mask if topf[1] > 0 and xshape[2] >= 2*topf[1]: mask = [1]*(topf[1] ) +\ [0]*(xshape[2] - 2*topf[1]) +\ [1]*(topf[1] ) mask = [[[mask]]] mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,1,3,2)) mask = KB.constant(mask) x *= mask return x if __name__ == "__main__": import cv2, sys import __main__ as SP import fft as CF # Build Model x = i = KL.Input(shape=(6,512,512)) f = CF.FFT2()(x) p = SP.SpectralPooling2D(gamma=[0.15,0.15])(f) o = CF.IFFT2()(p) model = KE.Model([i], [f,p,o]) model.compile("sgd", "mse") # Use it img = cv2.imread(sys.argv[1]) imgBatch = img[np.newaxis,...].transpose((0,3,1,2)) imgBatch = np.concatenate([imgBatch, np.zeros_like(imgBatch)], axis=1) f,p,o = model.predict(imgBatch) ffted = np.sqrt(np.sum(f[:,:3]**2 + f[:,3:]**2, axis=1)) ffted = ffted .transpose((1,2,0))/255 pooled = np.sqrt(np.sum(p[:,:3]**2 + p[:,3:]**2, axis=1)) pooled = pooled.transpose((1,2,0))/255 filtered = np.clip(o,0,255).transpose((0,2,3,1))[0,:,:,:3].astype("uint8") # Display it cv2.imshow("Original", img) cv2.imshow("FFT", ffted) cv2.imshow("Pooled", pooled) cv2.imshow("Filtered", filtered) cv2.waitKey(0) |