pool.py
4.76 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Authors: Olexa Bilaniuk
#
import keras.backend as KB
import keras.engine as KE
import keras.layers as KL
import keras.optimizers as KO
import theano as T
import theano.ifelse as TI
import theano.tensor as TT
import theano.tensor.fft as TTF
import numpy as np
#
# Spectral Pooling Layer
#
class SpectralPooling1D(KL.Layer):
def __init__(self, topf=(0,)):
super(SpectralPooling1D, self).__init__()
if "topf" in kwargs:
self.topf = (int (kwargs["topf" ][0]),)
self.topf = (self.topf[0]//2,)
elif "gamma" in kwargs:
self.gamma = (float(kwargs["gamma"][0]),)
self.gamma = (self.gamma[0]/2,)
else:
raise RuntimeError("Must provide either topf= or gamma= !")
def call(self, x, mask=None):
xshape = x._keras_shape
if hasattr(self, "topf"):
topf = self.topf
else:
if KB.image_data_format() == "channels_first":
topf = (int(self.gamma[0]*xshape[2]),)
else:
topf = (int(self.gamma[0]*xshape[1]),)
if KB.image_data_format() == "channels_first":
if topf[0] > 0 and xshape[2] >= 2*topf[0]:
mask = [1]*(topf[0] ) +\
[0]*(xshape[2] - 2*topf[0]) +\
[1]*(topf[0] )
mask = [[mask]]
mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,1,2))
mask = KB.constant(mask)
x *= mask
else:
if topf[0] > 0 and xshape[1] >= 2*topf[0]:
mask = [1]*(topf[0] ) +\
[0]*(xshape[1] - 2*topf[0]) +\
[1]*(topf[0] )
mask = [[mask]]
mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,2,1))
mask = KB.constant(mask)
x *= mask
return x
class SpectralPooling2D(KL.Layer):
def __init__(self, **kwargs):
super(SpectralPooling2D, self).__init__()
if "topf" in kwargs:
self.topf = (int (kwargs["topf" ][0]), int (kwargs["topf" ][1]))
self.topf = (self.topf[0]//2, self.topf[1]//2)
elif "gamma" in kwargs:
self.gamma = (float(kwargs["gamma"][0]), float(kwargs["gamma"][1]))
self.gamma = (self.gamma[0]/2, self.gamma[1]/2)
else:
raise RuntimeError("Must provide either topf= or gamma= !")
def call(self, x, mask=None):
xshape = x._keras_shape
if hasattr(self, "topf"):
topf = self.topf
else:
if KB.image_data_format() == "channels_first":
topf = (int(self.gamma[0]*xshape[2]), int(self.gamma[1]*xshape[3]))
else:
topf = (int(self.gamma[0]*xshape[1]), int(self.gamma[1]*xshape[2]))
if KB.image_data_format() == "channels_first":
if topf[0] > 0 and xshape[2] >= 2*topf[0]:
mask = [1]*(topf[0] ) +\
[0]*(xshape[2] - 2*topf[0]) +\
[1]*(topf[0] )
mask = [[[mask]]]
mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,1,3,2))
mask = KB.constant(mask)
x *= mask
if topf[1] > 0 and xshape[3] >= 2*topf[1]:
mask = [1]*(topf[1] ) +\
[0]*(xshape[3] - 2*topf[1]) +\
[1]*(topf[1] )
mask = [[[mask]]]
mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,1,2,3))
mask = KB.constant(mask)
x *= mask
else:
if topf[0] > 0 and xshape[1] >= 2*topf[0]:
mask = [1]*(topf[0] ) +\
[0]*(xshape[1] - 2*topf[0]) +\
[1]*(topf[0] )
mask = [[[mask]]]
mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,3,1,2))
mask = KB.constant(mask)
x *= mask
if topf[1] > 0 and xshape[2] >= 2*topf[1]:
mask = [1]*(topf[1] ) +\
[0]*(xshape[2] - 2*topf[1]) +\
[1]*(topf[1] )
mask = [[[mask]]]
mask = np.asarray(mask, dtype=KB.floatx()).transpose((0,1,3,2))
mask = KB.constant(mask)
x *= mask
return x
if __name__ == "__main__":
import cv2, sys
import __main__ as SP
import fft as CF
# Build Model
x = i = KL.Input(shape=(6,512,512))
f = CF.FFT2()(x)
p = SP.SpectralPooling2D(gamma=[0.15,0.15])(f)
o = CF.IFFT2()(p)
model = KE.Model([i], [f,p,o])
model.compile("sgd", "mse")
# Use it
img = cv2.imread(sys.argv[1])
imgBatch = img[np.newaxis,...].transpose((0,3,1,2))
imgBatch = np.concatenate([imgBatch, np.zeros_like(imgBatch)], axis=1)
f,p,o = model.predict(imgBatch)
ffted = np.sqrt(np.sum(f[:,:3]**2 + f[:,3:]**2, axis=1))
ffted = ffted .transpose((1,2,0))/255
pooled = np.sqrt(np.sum(p[:,:3]**2 + p[:,3:]**2, axis=1))
pooled = pooled.transpose((1,2,0))/255
filtered = np.clip(o,0,255).transpose((0,2,3,1))[0,:,:,:3].astype("uint8")
# Display it
cv2.imshow("Original", img)
cv2.imshow("FFT", ffted)
cv2.imshow("Pooled", pooled)
cv2.imshow("Filtered", filtered)
cv2.waitKey(0)