utils.py
4.91 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Contributors: Titouan Parcollet
# Authors: Dmitriy Serdyuk, Olexa Bilaniuk, Chiheb Trabelsi
import keras.backend as K
from keras.layers import Layer, Lambda
################
# Quaternions #
################
def get_rpart(x):
image_format = K.image_data_format()
ndim = K.ndim(x)
input_shape = K.shape(x)
if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
input_dim = input_shape[1] // 4
return x[:, :input_dim]
input_dim = input_shape[-1] // 4
if ndim == 3:
return x[:, :, :input_dim]
elif ndim == 4:
return x[:, :, :, :input_dim]
elif ndim == 5:
return x[:, :, :, :, :input_dim]
def get_ipart(x):
image_format = K.image_data_format()
ndim = K.ndim(x)
input_shape = K.shape(x)
if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
input_dim = input_shape[1] // 4
return x[:, input_dim:input_dim*2]
input_dim = input_shape[-1] // 4
if ndim == 3:
return x[:, :, input_dim:input_dim*2]
elif ndim == 4:
return x[:, :, :, input_dim:input_dim*2]
elif ndim == 5:
return x[:, :, :, :, input_dim:input_dim*2]
def get_jpart(x):
image_format = K.image_data_format()
ndim = K.ndim(x)
input_shape = K.shape(x)
if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
input_dim = input_shape[1] // 4
return x[:, input_dim*2:input_dim*3]
input_dim = input_shape[-1] // 4
if ndim == 3:
return x[:, :, input_dim*2:input_dim*3]
elif ndim == 4:
return x[:, :, :, input_dim*2:input_dim*3]
elif ndim == 5:
return x[:, :, :, :, input_dim*2:input_dim*3]
def get_kpart(x):
image_format = K.image_data_format()
ndim = K.ndim(x)
input_shape = K.shape(x)
if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
input_dim = input_shape[1] // 4
return x[:, input_dim*3:]
input_dim = input_shape[-1] // 4
if ndim == 3:
return x[:, :, input_dim*3:]
elif ndim == 4:
return x[:, :, :, input_dim*3:]
elif ndim == 5:
return x[:, :, :, :, input_dim*3:]
class GetR(Layer):
def call(self, inputs):
return get_rpart(inputs)
def compute_output_shape(self, input_shape):
return getpart_quaternion_output_shape(input_shape)
class GetI(Layer):
def call(self, inputs):
return get_ipart(inputs)
def compute_output_shape(self, input_shape):
return getpart_quaternion_output_shape(input_shape)
class GetJ(Layer):
def call(self, inputs):
return get_jpart(inputs)
def compute_output_shape(self, input_shape):
return getpart_quaternion_output_shape(input_shape)
class GetK(Layer):
def call(self, inputs):
return get_kpart(inputs)
def compute_output_shape(self, input_shape):
return getpart_quaternion_output_shape(input_shape)
def getpart_quaternion_output_shape(input_shape):
returned_shape = list(input_shape[:])
image_format = K.image_data_format()
ndim = len(returned_shape)
if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
axis = 1
else:
axis = -1
returned_shape[axis] = returned_shape[axis] // 4
return tuple(returned_shape)
#
# GetReal/GetImag Lambda layer Implementation
#
def get_realpart(x):
image_format = K.image_data_format()
ndim = K.ndim(x)
input_shape = K.shape(x)
if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
input_dim = input_shape[1] // 2
return x[:, :input_dim]
input_dim = input_shape[-1] // 2
if ndim == 3:
return x[:, :, :input_dim]
elif ndim == 4:
return x[:, :, :, :input_dim]
elif ndim == 5:
return x[:, :, :, :, :input_dim]
def get_imagpart(x):
image_format = K.image_data_format()
ndim = K.ndim(x)
input_shape = K.shape(x)
if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
input_dim = input_shape[1] // 2
return x[:, input_dim:]
input_dim = input_shape[-1] // 2
if ndim == 3:
return x[:, :, input_dim:]
elif ndim == 4:
return x[:, :, :, input_dim:]
elif ndim == 5:
return x[:, :, :, :, input_dim:]
def get_abs(x):
real = get_realpart(x)
imag = get_imagpart(x)
return K.sqrt(real * real + imag * imag)
def getpart_output_shape(input_shape):
returned_shape = list(input_shape[:])
image_format = K.image_data_format()
ndim = len(returned_shape)
if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
axis = 1
else:
axis = -1
returned_shape[axis] = returned_shape[axis] // 2
return tuple(returned_shape)
class GetReal(Layer):
def call(self, inputs):
return get_realpart(inputs)
def compute_output_shape(self, input_shape):
return getpart_output_shape(input_shape)
class GetImag(Layer):
def call(self, inputs):
return get_imagpart(inputs)
def compute_output_shape(self, input_shape):
return getpart_output_shape(input_shape)
class GetAbs(Layer):
def call(self, inputs):
return get_abs(inputs)
def compute_output_shape(self, input_shape):
return getpart_output_shape(input_shape)