Blame view
src/fgmmbin/fgmm-global-acc-stats-post.cc
5.46 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
// fgmmbin/fgmm-global-acc-stats-post.cc // Copyright 2015 David Snyder // 2015 Johns Hopkins University (Author: Daniel Povey) // 2015 Johns Hopkins University (Author: Daniel Garcia-Romero) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/model-common.h" #include "gmm/full-gmm.h" #include "gmm/diag-gmm.h" #include "gmm/mle-full-gmm.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; const char *usage = "Accumulate stats from posteriors and features for instantiating " "a full-covariance GMM. See also fgmm-global-acc-stats. " "Usage: fgmm-global-acc-stats-post [options] <posterior-rspecifier> " "<number-of-components> <feature-rspecifier> <stats-out> " "e.g.: fgmm-global-acc-stats-post scp:post.scp 2048 " "scp:train.scp 1.acc "; ParseOptions po(usage); bool binary = true; std::string update_flags_str = "mvw"; std::string weights_rspecifier; po.Register("binary", &binary, "Write output in binary mode"); po.Register("update-flags", &update_flags_str, "Which GMM parameters will be " "updated: subset of mvw."); po.Register("weights", &weights_rspecifier, "rspecifier for a vector of floats " "for each utterance, that's a per-frame weight."); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string post_rspecifier = po.GetArg(1), feature_rspecifier = po.GetArg(3), accs_wxfilename = po.GetArg(4); int32 num_components = atoi(po.GetArg(2).c_str()); AccumFullGmm fgmm_accs; double tot_like = 0.0, tot_weight = 0.0; SequentialPosteriorReader post_reader(post_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier); int32 num_done = 0, num_err = 0; for (; !post_reader.Done(); post_reader.Next()) { std::string key = post_reader.Key(); Posterior post = post_reader.Value(); if (!feature_reader.HasKey(key)) { KALDI_WARN << "No features available for utterance " << key; num_err++; continue; } const Matrix<BaseFloat> &mat = feature_reader.Value(key); int32 file_frames = mat.NumRows(); // Initialize the FGMM accs before processing the first utt. if (num_done == 0) { fgmm_accs.Resize(num_components, mat.NumCols(), StringToGmmFlags(update_flags_str)); } BaseFloat file_like = 0.0, file_weight = 0.0; // total of weights of frames (will each be // 1 unless --weights option supplied. Vector<BaseFloat> weights; if (weights_rspecifier != "") { // We have per-frame weighting. if (!weights_reader.HasKey(key)) { KALDI_WARN << "No per-frame weights available for utterance " << key; num_err++; continue; } weights = weights_reader.Value(key); if (weights.Dim() != file_frames) { KALDI_WARN << "Weights for utterance " << key << " have wrong dim " << weights.Dim() << " vs. " << file_frames; num_err++; continue; } } if (post.size() != static_cast<size_t>(file_frames)) { KALDI_WARN << "posterior information for utterance " << key << " has wrong size " << post.size() << " vs. " << file_frames; num_err++; continue; } for (int32 i = 0; i < file_frames; i++) { BaseFloat weight = (weights.Dim() != 0) ? weights(i) : 1.0; if (weight == 0.0) continue; file_weight += weight; SubVector<BaseFloat> data(mat, i); ScalePosterior(weight, &post); file_like += TotalPosterior(post); for (int32 j = 0; j < post[i].size(); j++) fgmm_accs.AccumulateForComponent(data, post[i][j].first, post[i][j].second); } KALDI_VLOG(2) << "File '" << key << "': Average likelihood = " << (file_like/file_weight) << " over " << file_weight <<" frames."; tot_like += file_like; tot_weight += file_weight; num_done++; } KALDI_LOG << "Done " << num_done << " files; " << num_err << " with errors."; KALDI_LOG << "Overall likelihood per " << "frame = " << (tot_like/tot_weight) << " over " << tot_weight << " (weighted) frames."; WriteKaldiObject(fgmm_accs, accs_wxfilename, binary); KALDI_LOG << "Written accs to " << accs_wxfilename; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |