fgmm-global-acc-stats-post.cc
5.46 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// fgmmbin/fgmm-global-acc-stats-post.cc
// Copyright 2015 David Snyder
// 2015 Johns Hopkins University (Author: Daniel Povey)
// 2015 Johns Hopkins University (Author: Daniel Garcia-Romero)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/model-common.h"
#include "gmm/full-gmm.h"
#include "gmm/diag-gmm.h"
#include "gmm/mle-full-gmm.h"
#include "hmm/posterior.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
typedef kaldi::int32 int32;
const char *usage =
"Accumulate stats from posteriors and features for instantiating "
"a full-covariance GMM. See also fgmm-global-acc-stats.\n"
"Usage: fgmm-global-acc-stats-post [options] <posterior-rspecifier> "
"<number-of-components> <feature-rspecifier> <stats-out>\n"
"e.g.: fgmm-global-acc-stats-post scp:post.scp 2048 "
"scp:train.scp 1.acc\n";
ParseOptions po(usage);
bool binary = true;
std::string update_flags_str = "mvw";
std::string weights_rspecifier;
po.Register("binary", &binary, "Write output in binary mode");
po.Register("update-flags", &update_flags_str, "Which GMM parameters will be "
"updated: subset of mvw.");
po.Register("weights", &weights_rspecifier, "rspecifier for a vector of floats "
"for each utterance, that's a per-frame weight.");
po.Read(argc, argv);
if (po.NumArgs() != 4) {
po.PrintUsage();
exit(1);
}
std::string post_rspecifier = po.GetArg(1),
feature_rspecifier = po.GetArg(3),
accs_wxfilename = po.GetArg(4);
int32 num_components = atoi(po.GetArg(2).c_str());
AccumFullGmm fgmm_accs;
double tot_like = 0.0, tot_weight = 0.0;
SequentialPosteriorReader post_reader(post_rspecifier);
RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier);
int32 num_done = 0, num_err = 0;
for (; !post_reader.Done(); post_reader.Next()) {
std::string key = post_reader.Key();
Posterior post = post_reader.Value();
if (!feature_reader.HasKey(key)) {
KALDI_WARN << "No features available for utterance "
<< key;
num_err++;
continue;
}
const Matrix<BaseFloat> &mat = feature_reader.Value(key);
int32 file_frames = mat.NumRows();
// Initialize the FGMM accs before processing the first utt.
if (num_done == 0) {
fgmm_accs.Resize(num_components, mat.NumCols(),
StringToGmmFlags(update_flags_str));
}
BaseFloat file_like = 0.0,
file_weight = 0.0; // total of weights of frames (will each be
// 1 unless --weights option supplied.
Vector<BaseFloat> weights;
if (weights_rspecifier != "") { // We have per-frame weighting.
if (!weights_reader.HasKey(key)) {
KALDI_WARN << "No per-frame weights available for utterance "
<< key;
num_err++;
continue;
}
weights = weights_reader.Value(key);
if (weights.Dim() != file_frames) {
KALDI_WARN << "Weights for utterance " << key << " have wrong dim "
<< weights.Dim() << " vs. " << file_frames;
num_err++;
continue;
}
}
if (post.size() != static_cast<size_t>(file_frames)) {
KALDI_WARN << "posterior information for utterance " << key
<< " has wrong size " << post.size() << " vs. "
<< file_frames;
num_err++;
continue;
}
for (int32 i = 0; i < file_frames; i++) {
BaseFloat weight = (weights.Dim() != 0) ? weights(i) : 1.0;
if (weight == 0.0) continue;
file_weight += weight;
SubVector<BaseFloat> data(mat, i);
ScalePosterior(weight, &post);
file_like += TotalPosterior(post);
for (int32 j = 0; j < post[i].size(); j++)
fgmm_accs.AccumulateForComponent(data, post[i][j].first,
post[i][j].second);
}
KALDI_VLOG(2) << "File '" << key << "': Average likelihood = "
<< (file_like/file_weight) << " over "
<< file_weight <<" frames.";
tot_like += file_like;
tot_weight += file_weight;
num_done++;
}
KALDI_LOG << "Done " << num_done << " files; "
<< num_err << " with errors.";
KALDI_LOG << "Overall likelihood per "
<< "frame = " << (tot_like/tot_weight) << " over "
<< tot_weight << " (weighted) frames.";
WriteKaldiObject(fgmm_accs, accs_wxfilename, binary);
KALDI_LOG << "Written accs to " << accs_wxfilename;
return (num_done != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}