Blame view
src/gmmbin/gmm-decode-biglm-faster.cc
9.07 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
// gmmbin/gmm-decode-biglm-faster.cc // Copyright 2009-2011 Gilles Boulianne Microsoft Corporation // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/biglm-faster-decoder.h" #include "gmm/decodable-am-diag-gmm.h" #include "base/timer.h" namespace kaldi { fst::Fst<fst::StdArc> *ReadNetwork(std::string filename) { // read decoding network FST Input ki(filename); // use ki.Stream() instead of is. if (!ki.Stream().good()) KALDI_ERR << "Could not open decoding-graph FST " << filename; fst::FstHeader hdr; if (!hdr.Read(ki.Stream(), "<unknown>")) { KALDI_ERR << "Reading FST: error reading FST header."; } if (hdr.ArcType() != fst::StdArc::Type()) { KALDI_ERR << "FST with arc type " << hdr.ArcType() << " not supported."; } fst::FstReadOptions ropts("<unspecified>", &hdr); fst::Fst<fst::StdArc> *decode_fst = NULL; if (hdr.FstType() == "vector") { decode_fst = fst::VectorFst<fst::StdArc>::Read(ki.Stream(), ropts); } else if (hdr.FstType() == "const") { decode_fst = fst::ConstFst<fst::StdArc>::Read(ki.Stream(), ropts); } else { KALDI_ERR << "Reading FST: unsupported FST type: " << hdr.FstType(); } if (decode_fst == NULL) { // fst code will warn. KALDI_ERR << "Error reading FST (after reading header)."; return NULL; } else { return decode_fst; } } } int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::Fst; using fst::StdArc; using fst::ReadFstKaldi; const char *usage = "Decode features using GMM-based model. " "User supplies LM used to generate decoding graph, and desired LM; " "this decoder applies the difference during decoding " "Usage: gmm-decode-biglm-faster [options] model-in fst-in oldlm-fst-in newlm-fst-in features-rspecifier words-wspecifier [alignments-wspecifier [lattice-wspecifier]] "; ParseOptions po(usage); bool allow_partial = true; BaseFloat acoustic_scale = 0.1; std::string word_syms_filename; BiglmFasterDecoderOptions decoder_opts; decoder_opts.Register(&po, true); // true == include obscure settings. po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "Produce output even when final state was not reached"); po.Read(argc, argv); if (po.NumArgs() < 6 || po.NumArgs() > 8) { po.PrintUsage(); exit(1); } std::string model_rxfilename = po.GetArg(1), fst_rxfilename = po.GetArg(2), old_lm_fst_rxfilename = po.GetArg(3), new_lm_fst_rxfilename = po.GetArg(4), feature_rspecifier = po.GetArg(5), words_wspecifier = po.GetArg(6), alignment_wspecifier = po.GetOptArg(7), lattice_wspecifier = po.GetOptArg(8); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); CompactLatticeWriter clat_writer(lattice_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") { word_syms = fst::SymbolTable::ReadText(word_syms_filename); if (!word_syms) KALDI_ERR << "Could not read symbol table from file "<<word_syms_filename; } SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); // It's important that we initialize decode_fst after feature_reader, as it // can prevent crashes on systems installed without enough virtual memory. // It has to do with what happens on UNIX systems if you call fork() on a // large process: the page-table entries are duplicated, which requires a // lot of virtual memory. Fst<StdArc> *decode_fst = ReadNetwork(fst_rxfilename); VectorFst<StdArc> *old_lm_fst = ReadFstKaldi(old_lm_fst_rxfilename); ApplyProbabilityScale(-1.0, old_lm_fst); // Negate old LM probs... VectorFst<StdArc> *new_lm_fst = ReadFstKaldi(new_lm_fst_rxfilename); BaseFloat tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; Timer timer; for (; !feature_reader.Done(); feature_reader.Next()) { std::string key = feature_reader.Key(); Matrix<BaseFloat> features (feature_reader.Value()); feature_reader.FreeCurrent(); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << key; num_fail++; continue; } fst::BackoffDeterministicOnDemandFst<StdArc> old_lm_dfst(*old_lm_fst); fst::BackoffDeterministicOnDemandFst<StdArc> new_lm_dfst(*new_lm_fst); fst::ComposeDeterministicOnDemandFst<StdArc> compose_dfst(&old_lm_dfst, &new_lm_dfst); fst::CacheDeterministicOnDemandFst<StdArc> cache_dfst(&compose_dfst); BiglmFasterDecoder decoder(*decode_fst, decoder_opts, &cache_dfst); DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); decoder.Decode(&gmm_decodable); std::cerr << "Length of file is "<<features.NumRows()<<' '; fst::VectorFst<LatticeArc> decoded; // linear FST. if ( (allow_partial || decoder.ReachedFinal()) && decoder.GetBestPath(&decoded) ) { if (!decoder.ReachedFinal()) KALDI_WARN << "Decoder did not reach end-state, " << "outputting partial traceback since --allow-partial=true"; num_success++; if (!decoder.ReachedFinal()) KALDI_WARN << "Decoder did not reach end-state, outputting partial traceback."; std::vector<int32> alignment; std::vector<int32> words; LatticeWeight weight; frame_count += features.NumRows(); GetLinearSymbolSequence(decoded, &alignment, &words, &weight); words_writer.Write(key, words); if (alignment_writer.IsOpen()) alignment_writer.Write(key, alignment); if (lattice_wspecifier != "") { if (acoustic_scale != 0.0) // We'll write the lattice without acoustic scaling fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &decoded); fst::VectorFst<CompactLatticeArc> clat; ConvertLattice(decoded, &clat, true); clat_writer.Write(key, clat); } if (word_syms != NULL) { std::cerr << key << ' '; for (size_t i = 0; i < words.size(); i++) { std::string s = word_syms->Find(words[i]); if (s == "") KALDI_ERR << "Word-id " << words[i] <<" not in symbol table."; std::cerr << s << ' '; } std::cerr << ' '; } BaseFloat like = -weight.Value1() -weight.Value2(); tot_like += like; KALDI_LOG << "Log-like per frame for utterance " << key << " is " << (like / features.NumRows()) << " over " << features.NumRows() << " frames."; KALDI_VLOG(2) << "Cost for utterance " << key << " is " << weight.Value1() << " + " << weight.Value2(); } else { num_fail++; KALDI_WARN << "Did not successfully decode utterance " << key << ", len = " << features.NumRows(); } } double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken [excluding initialization] "<< elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed*100.0/frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<<" frames."; delete word_syms; delete decode_fst; delete old_lm_fst; delete new_lm_fst; return (num_success != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |