gmm-decode-biglm-faster.cc
9.07 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// gmmbin/gmm-decode-biglm-faster.cc
// Copyright 2009-2011 Gilles Boulianne Microsoft Corporation
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "hmm/transition-model.h"
#include "fstext/fstext-lib.h"
#include "decoder/biglm-faster-decoder.h"
#include "gmm/decodable-am-diag-gmm.h"
#include "base/timer.h"
namespace kaldi {
fst::Fst<fst::StdArc> *ReadNetwork(std::string filename) {
// read decoding network FST
Input ki(filename); // use ki.Stream() instead of is.
if (!ki.Stream().good()) KALDI_ERR << "Could not open decoding-graph FST "
<< filename;
fst::FstHeader hdr;
if (!hdr.Read(ki.Stream(), "<unknown>")) {
KALDI_ERR << "Reading FST: error reading FST header.";
}
if (hdr.ArcType() != fst::StdArc::Type()) {
KALDI_ERR << "FST with arc type " << hdr.ArcType() << " not supported.";
}
fst::FstReadOptions ropts("<unspecified>", &hdr);
fst::Fst<fst::StdArc> *decode_fst = NULL;
if (hdr.FstType() == "vector") {
decode_fst = fst::VectorFst<fst::StdArc>::Read(ki.Stream(), ropts);
} else if (hdr.FstType() == "const") {
decode_fst = fst::ConstFst<fst::StdArc>::Read(ki.Stream(), ropts);
} else {
KALDI_ERR << "Reading FST: unsupported FST type: " << hdr.FstType();
}
if (decode_fst == NULL) { // fst code will warn.
KALDI_ERR << "Error reading FST (after reading header).";
return NULL;
} else {
return decode_fst;
}
}
}
int main(int argc, char *argv[])
{
try {
using namespace kaldi;
typedef kaldi::int32 int32;
using fst::SymbolTable;
using fst::VectorFst;
using fst::Fst;
using fst::StdArc;
using fst::ReadFstKaldi;
const char *usage =
"Decode features using GMM-based model.\n"
"User supplies LM used to generate decoding graph, and desired LM;\n"
"this decoder applies the difference during decoding\n"
"Usage: gmm-decode-biglm-faster [options] model-in fst-in oldlm-fst-in newlm-fst-in features-rspecifier words-wspecifier [alignments-wspecifier [lattice-wspecifier]]\n";
ParseOptions po(usage);
bool allow_partial = true;
BaseFloat acoustic_scale = 0.1;
std::string word_syms_filename;
BiglmFasterDecoderOptions decoder_opts;
decoder_opts.Register(&po, true); // true == include obscure settings.
po.Register("acoustic-scale", &acoustic_scale,
"Scaling factor for acoustic likelihoods");
po.Register("word-symbol-table", &word_syms_filename,
"Symbol table for words [for debug output]");
po.Register("allow-partial", &allow_partial,
"Produce output even when final state was not reached");
po.Read(argc, argv);
if (po.NumArgs() < 6 || po.NumArgs() > 8) {
po.PrintUsage();
exit(1);
}
std::string model_rxfilename = po.GetArg(1),
fst_rxfilename = po.GetArg(2),
old_lm_fst_rxfilename = po.GetArg(3),
new_lm_fst_rxfilename = po.GetArg(4),
feature_rspecifier = po.GetArg(5),
words_wspecifier = po.GetArg(6),
alignment_wspecifier = po.GetOptArg(7),
lattice_wspecifier = po.GetOptArg(8);
TransitionModel trans_model;
AmDiagGmm am_gmm;
{
bool binary;
Input ki(model_rxfilename, &binary);
trans_model.Read(ki.Stream(), binary);
am_gmm.Read(ki.Stream(), binary);
}
Int32VectorWriter words_writer(words_wspecifier);
Int32VectorWriter alignment_writer(alignment_wspecifier);
CompactLatticeWriter clat_writer(lattice_wspecifier);
fst::SymbolTable *word_syms = NULL;
if (word_syms_filename != "") {
word_syms = fst::SymbolTable::ReadText(word_syms_filename);
if (!word_syms)
KALDI_ERR << "Could not read symbol table from file "<<word_syms_filename;
}
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
// It's important that we initialize decode_fst after feature_reader, as it
// can prevent crashes on systems installed without enough virtual memory.
// It has to do with what happens on UNIX systems if you call fork() on a
// large process: the page-table entries are duplicated, which requires a
// lot of virtual memory.
Fst<StdArc> *decode_fst = ReadNetwork(fst_rxfilename);
VectorFst<StdArc> *old_lm_fst = ReadFstKaldi(old_lm_fst_rxfilename);
ApplyProbabilityScale(-1.0, old_lm_fst); // Negate old LM probs...
VectorFst<StdArc> *new_lm_fst = ReadFstKaldi(new_lm_fst_rxfilename);
BaseFloat tot_like = 0.0;
kaldi::int64 frame_count = 0;
int num_success = 0, num_fail = 0;
Timer timer;
for (; !feature_reader.Done(); feature_reader.Next()) {
std::string key = feature_reader.Key();
Matrix<BaseFloat> features (feature_reader.Value());
feature_reader.FreeCurrent();
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << key;
num_fail++;
continue;
}
fst::BackoffDeterministicOnDemandFst<StdArc> old_lm_dfst(*old_lm_fst);
fst::BackoffDeterministicOnDemandFst<StdArc> new_lm_dfst(*new_lm_fst);
fst::ComposeDeterministicOnDemandFst<StdArc> compose_dfst(&old_lm_dfst,
&new_lm_dfst);
fst::CacheDeterministicOnDemandFst<StdArc> cache_dfst(&compose_dfst);
BiglmFasterDecoder decoder(*decode_fst, decoder_opts, &cache_dfst);
DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features,
acoustic_scale);
decoder.Decode(&gmm_decodable);
std::cerr << "Length of file is "<<features.NumRows()<<'\n';
fst::VectorFst<LatticeArc> decoded; // linear FST.
if ( (allow_partial || decoder.ReachedFinal())
&& decoder.GetBestPath(&decoded) ) {
if (!decoder.ReachedFinal())
KALDI_WARN << "Decoder did not reach end-state, "
<< "outputting partial traceback since --allow-partial=true";
num_success++;
if (!decoder.ReachedFinal())
KALDI_WARN << "Decoder did not reach end-state, outputting partial traceback.";
std::vector<int32> alignment;
std::vector<int32> words;
LatticeWeight weight;
frame_count += features.NumRows();
GetLinearSymbolSequence(decoded, &alignment, &words, &weight);
words_writer.Write(key, words);
if (alignment_writer.IsOpen())
alignment_writer.Write(key, alignment);
if (lattice_wspecifier != "") {
if (acoustic_scale != 0.0) // We'll write the lattice without acoustic scaling
fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &decoded);
fst::VectorFst<CompactLatticeArc> clat;
ConvertLattice(decoded, &clat, true);
clat_writer.Write(key, clat);
}
if (word_syms != NULL) {
std::cerr << key << ' ';
for (size_t i = 0; i < words.size(); i++) {
std::string s = word_syms->Find(words[i]);
if (s == "")
KALDI_ERR << "Word-id " << words[i] <<" not in symbol table.";
std::cerr << s << ' ';
}
std::cerr << '\n';
}
BaseFloat like = -weight.Value1() -weight.Value2();
tot_like += like;
KALDI_LOG << "Log-like per frame for utterance " << key << " is "
<< (like / features.NumRows()) << " over "
<< features.NumRows() << " frames.";
KALDI_VLOG(2) << "Cost for utterance " << key << " is "
<< weight.Value1() << " + " << weight.Value2();
} else {
num_fail++;
KALDI_WARN << "Did not successfully decode utterance " << key
<< ", len = " << features.NumRows();
}
}
double elapsed = timer.Elapsed();
KALDI_LOG << "Time taken [excluding initialization] "<< elapsed
<< "s: real-time factor assuming 100 frames/sec is "
<< (elapsed*100.0/frame_count);
KALDI_LOG << "Done " << num_success << " utterances, failed for "
<< num_fail;
KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over "
<< frame_count<<" frames.";
delete word_syms;
delete decode_fst;
delete old_lm_fst;
delete new_lm_fst;
return (num_success != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}