Blame view
src/gmmbin/gmm-decode-faster-regtree-fmllr.cc
10.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
// gmmbin/gmm-decode-faster-regtree-fmllr.cc // Copyright 2009-2012 Microsoft Corporation; Saarland University; // Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <string> #include <vector> #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/regression-tree.h" #include "transform/regtree-fmllr-diag-gmm.h" #include "transform/fmllr-diag-gmm.h" #include "fstext/fstext-lib.h" #include "decoder/faster-decoder.h" #include "transform/decodable-am-diag-gmm-regtree.h" #include "base/timer.h" #include "lat/kaldi-lattice.h" // for {Compact}LatticeArc using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; using kaldi::BaseFloat; using std::string; using std::vector; using kaldi::LatticeWeight; using kaldi::LatticeArc; struct DecodeInfo { public: DecodeInfo(const kaldi::AmDiagGmm &am, const kaldi::TransitionModel &tm, kaldi::FasterDecoder *decoder, BaseFloat scale, bool allow_partial, const kaldi::Int32VectorWriter &wwriter, const kaldi::Int32VectorWriter &awriter, fst::SymbolTable *wsyms) : acoustic_model(am), trans_model(tm), decoder(decoder), acoustic_scale(scale), allow_partial(allow_partial), words_writer(wwriter), alignment_writer(awriter), word_syms(wsyms) {} const kaldi::AmDiagGmm &acoustic_model; const kaldi::TransitionModel &trans_model; kaldi::FasterDecoder *decoder; BaseFloat acoustic_scale; bool allow_partial; const kaldi::Int32VectorWriter &words_writer; const kaldi::Int32VectorWriter &alignment_writer; fst::SymbolTable *word_syms; private: KALDI_DISALLOW_COPY_AND_ASSIGN(DecodeInfo); }; bool DecodeUtterance(kaldi::FasterDecoder *decoder, kaldi::DecodableInterface *decodable, DecodeInfo *info, const string &uttid, int32 num_frames, BaseFloat *total_like) { decoder->Decode(decodable); KALDI_LOG << "Length of file is " << num_frames; VectorFst<LatticeArc> decoded; // linear FST. if ( (info->allow_partial || decoder->ReachedFinal()) && decoder->GetBestPath(&decoded) ) { if (!decoder->ReachedFinal()) KALDI_WARN << "Decoder did not reach end-state, outputting partial " "traceback."; vector<kaldi::int32> alignment, words; LatticeWeight weight; GetLinearSymbolSequence(decoded, &alignment, &words, &weight); info->words_writer.Write(uttid, words); if (info->alignment_writer.IsOpen()) info->alignment_writer.Write(uttid, alignment); if (info->word_syms != NULL) { std::ostringstream ss; ss << uttid << ' '; for (size_t i = 0; i < words.size(); i++) { string s = info->word_syms->Find(words[i]); if (s == "") KALDI_ERR << "Word-id " << words[i] << " not in symbol table."; ss << s << ' '; } ss << ' '; KALDI_LOG << ss.str(); } BaseFloat like = -weight.Value1() -weight.Value2(); KALDI_LOG << "Log-like per frame = " << (like/num_frames); (*total_like) += like; return true; } else { KALDI_WARN << "Did not successfully decode utterance, length = " << num_frames; return false; } } int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; const char *usage = "Decode features using GMM-based model. " "Usage: gmm-decode-faster-regtree-fmllr [options] model-in fst-in " "regtree-in features-rspecifier transforms-rspecifier " "words-wspecifier [alignments-wspecifier] "; ParseOptions po(usage); bool binary = true; bool allow_partial = true; BaseFloat acoustic_scale = 0.1; std::string word_syms_filename, utt2spk_rspecifier; FasterDecoderOptions decoder_opts; decoder_opts.Register(&po, true); // true == include obscure settings. po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to " "speaker map"); po.Register("binary", &binary, "Write output in binary mode"); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "Produce output even when final state was not reached"); po.Read(argc, argv); if (po.NumArgs() < 6 || po.NumArgs() > 7) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), fst_in_filename = po.GetArg(2), regtree_filename = po.GetArg(3), feature_rspecifier = po.GetArg(4), xforms_rspecifier = po.GetArg(5), words_wspecifier = po.GetArg(6), alignment_wspecifier = po.GetOptArg(7); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary_read; Input ki(model_in_filename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_gmm.Read(ki.Stream(), binary_read); } VectorFst<StdArc> *decode_fst = fst::ReadFstKaldi(fst_in_filename); RegressionTree regtree; { bool binary_read; Input in(regtree_filename, &binary_read); regtree.Read(in.Stream(), binary_read, am_gmm); } RandomAccessRegtreeFmllrDiagGmmReaderMapped fmllr_reader(xforms_rspecifier, utt2spk_rspecifier); Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") { word_syms = fst::SymbolTable::ReadText(word_syms_filename); if (!word_syms) { KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; } } BaseFloat tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; FasterDecoder decoder(*decode_fst, decoder_opts); Timer timer; DecodeInfo decode_info(am_gmm, trans_model, &decoder, acoustic_scale, allow_partial, words_writer, alignment_writer, word_syms); SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); Matrix<BaseFloat> features(feature_reader.Value()); feature_reader.FreeCurrent(); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } if (!fmllr_reader.HasKey(utt)) { // Decode without FMLLR if none found KALDI_WARN << "No FMLLR transform for key " << utt << ", decoding without fMLLR."; kaldi::DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); if (DecodeUtterance(&decoder, &gmm_decodable, &decode_info, utt, features.NumRows(), &tot_like)) { frame_count += gmm_decodable.NumFramesReady(); num_success++; } else { num_fail++; } continue; } // If found, load the transforms for the current utterance. RegtreeFmllrDiagGmm fmllr(fmllr_reader.Value(utt)); if (fmllr.NumRegClasses() == 1) { Matrix<BaseFloat> xformed_features(features); Matrix<BaseFloat> fmllr_matrix; fmllr.GetXformMatrix(0, &fmllr_matrix); for (int32 i = 0; i < xformed_features.NumRows(); i++) { SubVector<BaseFloat> row(xformed_features, i); ApplyAffineTransform(fmllr_matrix, &row); } kaldi::DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, xformed_features, acoustic_scale); if (DecodeUtterance(&decoder, &gmm_decodable, &decode_info, utt, xformed_features.NumRows(), &tot_like)) { frame_count += gmm_decodable.NumFramesReady(); num_success++; } else { num_fail++; } } else { kaldi::DecodableAmDiagGmmRegtreeFmllr gmm_decodable(am_gmm, trans_model, features, fmllr, regtree, acoustic_scale); if (DecodeUtterance(&decoder, &gmm_decodable, &decode_info, utt, features.NumRows(), &tot_like)) { frame_count += gmm_decodable.NumFramesReady(); num_success++; } else { num_fail++; } } } // end looping over all utterances KALDI_LOG << "Average log-likelihood per frame is " << (tot_like / frame_count) << " over " << frame_count << " frames."; double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken [excluding initialization] " << elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed * 100.0 / frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; delete word_syms; delete decode_fst; if (num_success != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |