gmm-decode-faster-regtree-fmllr.cc
10.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// gmmbin/gmm-decode-faster-regtree-fmllr.cc
// Copyright 2009-2012 Microsoft Corporation; Saarland University;
// Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "hmm/transition-model.h"
#include "transform/regression-tree.h"
#include "transform/regtree-fmllr-diag-gmm.h"
#include "transform/fmllr-diag-gmm.h"
#include "fstext/fstext-lib.h"
#include "decoder/faster-decoder.h"
#include "transform/decodable-am-diag-gmm-regtree.h"
#include "base/timer.h"
#include "lat/kaldi-lattice.h" // for {Compact}LatticeArc
using fst::SymbolTable;
using fst::VectorFst;
using fst::StdArc;
using kaldi::BaseFloat;
using std::string;
using std::vector;
using kaldi::LatticeWeight;
using kaldi::LatticeArc;
struct DecodeInfo {
public:
DecodeInfo(const kaldi::AmDiagGmm &am,
const kaldi::TransitionModel &tm, kaldi::FasterDecoder *decoder,
BaseFloat scale, bool allow_partial,
const kaldi::Int32VectorWriter &wwriter,
const kaldi::Int32VectorWriter &awriter, fst::SymbolTable *wsyms)
: acoustic_model(am), trans_model(tm), decoder(decoder),
acoustic_scale(scale), allow_partial(allow_partial), words_writer(wwriter),
alignment_writer(awriter), word_syms(wsyms) {}
const kaldi::AmDiagGmm &acoustic_model;
const kaldi::TransitionModel &trans_model;
kaldi::FasterDecoder *decoder;
BaseFloat acoustic_scale;
bool allow_partial;
const kaldi::Int32VectorWriter &words_writer;
const kaldi::Int32VectorWriter &alignment_writer;
fst::SymbolTable *word_syms;
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(DecodeInfo);
};
bool DecodeUtterance(kaldi::FasterDecoder *decoder,
kaldi::DecodableInterface *decodable,
DecodeInfo *info,
const string &uttid,
int32 num_frames,
BaseFloat *total_like) {
decoder->Decode(decodable);
KALDI_LOG << "Length of file is " << num_frames;
VectorFst<LatticeArc> decoded; // linear FST.
if ( (info->allow_partial || decoder->ReachedFinal())
&& decoder->GetBestPath(&decoded) ) {
if (!decoder->ReachedFinal())
KALDI_WARN << "Decoder did not reach end-state, outputting partial "
"traceback.";
vector<kaldi::int32> alignment, words;
LatticeWeight weight;
GetLinearSymbolSequence(decoded, &alignment, &words, &weight);
info->words_writer.Write(uttid, words);
if (info->alignment_writer.IsOpen())
info->alignment_writer.Write(uttid, alignment);
if (info->word_syms != NULL) {
std::ostringstream ss;
ss << uttid << ' ';
for (size_t i = 0; i < words.size(); i++) {
string s = info->word_syms->Find(words[i]);
if (s == "")
KALDI_ERR << "Word-id " << words[i] << " not in symbol table.";
ss << s << ' ';
}
ss << '\n';
KALDI_LOG << ss.str();
}
BaseFloat like = -weight.Value1() -weight.Value2();
KALDI_LOG << "Log-like per frame = " << (like/num_frames);
(*total_like) += like;
return true;
} else {
KALDI_WARN << "Did not successfully decode utterance, length = "
<< num_frames;
return false;
}
}
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
typedef kaldi::int32 int32;
const char *usage = "Decode features using GMM-based model.\n"
"Usage: gmm-decode-faster-regtree-fmllr [options] model-in fst-in "
"regtree-in features-rspecifier transforms-rspecifier "
"words-wspecifier [alignments-wspecifier]\n";
ParseOptions po(usage);
bool binary = true;
bool allow_partial = true;
BaseFloat acoustic_scale = 0.1;
std::string word_syms_filename, utt2spk_rspecifier;
FasterDecoderOptions decoder_opts;
decoder_opts.Register(&po, true); // true == include obscure settings.
po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to "
"speaker map");
po.Register("binary", &binary, "Write output in binary mode");
po.Register("acoustic-scale", &acoustic_scale,
"Scaling factor for acoustic likelihoods");
po.Register("word-symbol-table", &word_syms_filename,
"Symbol table for words [for debug output]");
po.Register("allow-partial", &allow_partial,
"Produce output even when final state was not reached");
po.Read(argc, argv);
if (po.NumArgs() < 6 || po.NumArgs() > 7) {
po.PrintUsage();
exit(1);
}
std::string model_in_filename = po.GetArg(1),
fst_in_filename = po.GetArg(2),
regtree_filename = po.GetArg(3),
feature_rspecifier = po.GetArg(4),
xforms_rspecifier = po.GetArg(5),
words_wspecifier = po.GetArg(6),
alignment_wspecifier = po.GetOptArg(7);
TransitionModel trans_model;
AmDiagGmm am_gmm;
{
bool binary_read;
Input ki(model_in_filename, &binary_read);
trans_model.Read(ki.Stream(), binary_read);
am_gmm.Read(ki.Stream(), binary_read);
}
VectorFst<StdArc> *decode_fst = fst::ReadFstKaldi(fst_in_filename);
RegressionTree regtree;
{
bool binary_read;
Input in(regtree_filename, &binary_read);
regtree.Read(in.Stream(), binary_read, am_gmm);
}
RandomAccessRegtreeFmllrDiagGmmReaderMapped fmllr_reader(xforms_rspecifier,
utt2spk_rspecifier);
Int32VectorWriter words_writer(words_wspecifier);
Int32VectorWriter alignment_writer(alignment_wspecifier);
fst::SymbolTable *word_syms = NULL;
if (word_syms_filename != "") {
word_syms = fst::SymbolTable::ReadText(word_syms_filename);
if (!word_syms) {
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_filename;
}
}
BaseFloat tot_like = 0.0;
kaldi::int64 frame_count = 0;
int num_success = 0, num_fail = 0;
FasterDecoder decoder(*decode_fst, decoder_opts);
Timer timer;
DecodeInfo decode_info(am_gmm, trans_model, &decoder, acoustic_scale,
allow_partial, words_writer, alignment_writer,
word_syms);
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
for (; !feature_reader.Done(); feature_reader.Next()) {
string utt = feature_reader.Key();
Matrix<BaseFloat> features(feature_reader.Value());
feature_reader.FreeCurrent();
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_fail++;
continue;
}
if (!fmllr_reader.HasKey(utt)) { // Decode without FMLLR if none found
KALDI_WARN << "No FMLLR transform for key " << utt <<
", decoding without fMLLR.";
kaldi::DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model,
features,
acoustic_scale);
if (DecodeUtterance(&decoder, &gmm_decodable, &decode_info,
utt, features.NumRows(), &tot_like)) {
frame_count += gmm_decodable.NumFramesReady();
num_success++;
} else {
num_fail++;
}
continue;
}
// If found, load the transforms for the current utterance.
RegtreeFmllrDiagGmm fmllr(fmllr_reader.Value(utt));
if (fmllr.NumRegClasses() == 1) {
Matrix<BaseFloat> xformed_features(features);
Matrix<BaseFloat> fmllr_matrix;
fmllr.GetXformMatrix(0, &fmllr_matrix);
for (int32 i = 0; i < xformed_features.NumRows(); i++) {
SubVector<BaseFloat> row(xformed_features, i);
ApplyAffineTransform(fmllr_matrix, &row);
}
kaldi::DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model,
xformed_features,
acoustic_scale);
if (DecodeUtterance(&decoder, &gmm_decodable, &decode_info,
utt, xformed_features.NumRows(), &tot_like)) {
frame_count += gmm_decodable.NumFramesReady();
num_success++;
} else {
num_fail++;
}
} else {
kaldi::DecodableAmDiagGmmRegtreeFmllr gmm_decodable(am_gmm, trans_model,
features, fmllr,
regtree,
acoustic_scale);
if (DecodeUtterance(&decoder, &gmm_decodable, &decode_info,
utt, features.NumRows(), &tot_like)) {
frame_count += gmm_decodable.NumFramesReady();
num_success++;
} else {
num_fail++;
}
}
} // end looping over all utterances
KALDI_LOG << "Average log-likelihood per frame is " << (tot_like
/ frame_count) << " over " << frame_count << " frames.";
double elapsed = timer.Elapsed();
KALDI_LOG << "Time taken [excluding initialization] " << elapsed
<< "s: real-time factor assuming 100 frames/sec is "
<< (elapsed * 100.0 / frame_count);
KALDI_LOG << "Done " << num_success << " utterances, failed for "
<< num_fail;
delete word_syms;
delete decode_fst;
if (num_success != 0)
return 0;
else
return 1;
}
catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}