Blame view
src/gmmbin/gmm-latgen-biglm-faster.cc
12 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
// gmmbin/gmm-latgen-biglm-faster.cc // Copyright 2009-2011 Microsoft Corporation // 2013 Johns Hopkins University (author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "tree/context-dep.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/lattice-biglm-faster-decoder.h" #include "gmm/decodable-am-diag-gmm.h" #include "base/timer.h" namespace kaldi { // Takes care of output. Returns true on success. bool DecodeUtterance(LatticeBiglmFasterDecoder &decoder, // not const but is really an input. DecodableInterface &decodable, // not const but is really an input. const TransitionModel &trans_model, const fst::SymbolTable *word_syms, std::string utt, double acoustic_scale, bool determinize, bool allow_partial, Int32VectorWriter *alignment_writer, Int32VectorWriter *words_writer, CompactLatticeWriter *compact_lattice_writer, LatticeWriter *lattice_writer, double *like_ptr) { // puts utterance's like in like_ptr on success. using fst::VectorFst; if (!decoder.Decode(&decodable)) { KALDI_WARN << "Failed to decode file " << utt; return false; } if (!decoder.ReachedFinal()) { if (allow_partial) { KALDI_WARN << "Outputting partial output for utterance " << utt << " since no final-state reached "; } else { KALDI_WARN << "Not producing output for utterance " << utt << " since no final-state reached and " << "--allow-partial=false. "; return false; } } double likelihood; LatticeWeight weight; int32 num_frames; { // First do some stuff with word-level traceback... VectorFst<LatticeArc> decoded; decoder.GetBestPath(&decoded); if (decoded.NumStates() == 0) // Shouldn't really reach this point as already checked success. KALDI_ERR << "Failed to get traceback for utterance " << utt; std::vector<int32> alignment; std::vector<int32> words; GetLinearSymbolSequence(decoded, &alignment, &words, &weight); num_frames = alignment.size(); if (words_writer->IsOpen()) words_writer->Write(utt, words); if (alignment_writer->IsOpen()) alignment_writer->Write(utt, alignment); if (word_syms != NULL) { std::cerr << utt << ' '; for (size_t i = 0; i < words.size(); i++) { std::string s = word_syms->Find(words[i]); if (s == "") KALDI_ERR << "Word-id " << words[i] <<" not in symbol table."; std::cerr << s << ' '; } std::cerr << ' '; } likelihood = -(weight.Value1() + weight.Value2()); } // Get lattice, and do determinization if requested. Lattice lat; decoder.GetRawLattice(&lat); if (lat.NumStates() == 0) KALDI_ERR << "Unexpected problem getting lattice for utterance " << utt; fst::Connect(&lat); if (determinize) { CompactLattice clat; if (!DeterminizeLatticePhonePrunedWrapper( trans_model, &lat, decoder.GetOptions().lattice_beam, &clat, decoder.GetOptions().det_opts)) KALDI_WARN << "Determinization finished earlier than the beam for " << "utterance " << utt; // We'll write the lattice without acoustic scaling. if (acoustic_scale != 0.0) fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &clat); compact_lattice_writer->Write(utt, clat); } else { Lattice fst; decoder.GetRawLattice(&fst); if (fst.NumStates() == 0) KALDI_ERR << "Unexpected problem getting lattice for utterance " << utt; fst::Connect(&fst); // Will get rid of this later... shouldn't have any // disconnected states there, but we seem to. if (acoustic_scale != 0.0) // We'll write the lattice without acoustic scaling fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &fst); lattice_writer->Write(utt, fst); } KALDI_LOG << "Log-like per frame for utterance " << utt << " is " << (likelihood / num_frames) << " over " << num_frames << " frames."; KALDI_VLOG(2) << "Cost for utterance " << utt << " is " << weight.Value1() << " + " << weight.Value2(); *like_ptr = likelihood; return true; } } int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::Fst; using fst::StdArc; using fst::ReadFstKaldi; const char *usage = "Generate lattices using GMM-based model. " "User supplies LM used to generate decoding graph, and desired LM; " "this decoder applies the difference during decoding " "Usage: gmm-latgen-biglm-faster [options] model-in (fst-in|fsts-rspecifier) " "oldlm-fst-in newlm-fst-in features-rspecifier" " lattice-wspecifier [ words-wspecifier [alignments-wspecifier] ] "; ParseOptions po(usage); Timer timer; bool allow_partial = false; BaseFloat acoustic_scale = 0.1; LatticeBiglmFasterDecoderConfig config; std::string word_syms_filename; config.Register(&po); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "If true, produce output even if end state was not reached."); po.Read(argc, argv); if (po.NumArgs() < 6 || po.NumArgs() > 8) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), fst_in_str = po.GetArg(2), old_lm_fst_rxfilename = po.GetArg(3), new_lm_fst_rxfilename = po.GetArg(4), feature_rspecifier = po.GetArg(5), lattice_wspecifier = po.GetArg(6), words_wspecifier = po.GetOptArg(7), alignment_wspecifier = po.GetOptArg(8); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } VectorFst<StdArc> *old_lm_fst = fst::CastOrConvertToVectorFst( fst::ReadFstKaldiGeneric(old_lm_fst_rxfilename)); ApplyProbabilityScale(-1.0, old_lm_fst); // Negate old LM probs... VectorFst<StdArc> *new_lm_fst = fst::CastOrConvertToVectorFst( fst::ReadFstKaldiGeneric(new_lm_fst_rxfilename)); fst::BackoffDeterministicOnDemandFst<StdArc> old_lm_dfst(*old_lm_fst); fst::BackoffDeterministicOnDemandFst<StdArc> new_lm_dfst(*new_lm_fst); fst::ComposeDeterministicOnDemandFst<StdArc> compose_dfst(&old_lm_dfst, &new_lm_dfst); fst::CacheDeterministicOnDemandFst<StdArc> cache_dfst(&compose_dfst); bool determinize = config.determinize_lattice; CompactLatticeWriter compact_lattice_writer; LatticeWriter lattice_writer; if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier) : lattice_writer.Open(lattice_wspecifier))) KALDI_ERR << "Could not open table for writing lattices: " << lattice_wspecifier; Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename))) KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; double tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; if (ClassifyRspecifier(fst_in_str, NULL, NULL) == kNoRspecifier) { SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); // Input FST is just one FST, not a table of FSTs. Fst<StdArc> *decode_fst = fst::ReadFstKaldiGeneric(fst_in_str); { LatticeBiglmFasterDecoder decoder(*decode_fst, config, &cache_dfst); for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); Matrix<BaseFloat> features (feature_reader.Value()); feature_reader.FreeCurrent(); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); double like; if (DecodeUtterance(decoder, gmm_decodable, trans_model, word_syms, utt, acoustic_scale, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, &like)) { tot_like += like; frame_count += features.NumRows(); num_success++; } else num_fail++; } } delete decode_fst; // delete this only after decoder goes out of scope. } else { // We have different FSTs for different utterances. SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_in_str); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !fst_reader.Done(); fst_reader.Next()) { std::string utt = fst_reader.Key(); if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Not decoding utterance " << utt << " because no features available."; num_fail++; continue; } const Matrix<BaseFloat> &features = feature_reader.Value(utt); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } LatticeBiglmFasterDecoder decoder(fst_reader.Value(), config, &cache_dfst); DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); double like; if (DecodeUtterance(decoder, gmm_decodable, trans_model, word_syms, utt, acoustic_scale, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, &like)) { tot_like += like; frame_count += features.NumRows(); num_success++; } else num_fail++; } } double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken "<< elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed*100.0/frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<<" frames."; delete word_syms; if (num_success != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |