gmm-latgen-biglm-faster.cc
12 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// gmmbin/gmm-latgen-biglm-faster.cc
// Copyright 2009-2011 Microsoft Corporation
// 2013 Johns Hopkins University (author: Daniel Povey)
// 2014 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "tree/context-dep.h"
#include "hmm/transition-model.h"
#include "fstext/fstext-lib.h"
#include "decoder/lattice-biglm-faster-decoder.h"
#include "gmm/decodable-am-diag-gmm.h"
#include "base/timer.h"
namespace kaldi {
// Takes care of output. Returns true on success.
bool DecodeUtterance(LatticeBiglmFasterDecoder &decoder, // not const but is really an input.
DecodableInterface &decodable, // not const but is really an input.
const TransitionModel &trans_model,
const fst::SymbolTable *word_syms,
std::string utt,
double acoustic_scale,
bool determinize,
bool allow_partial,
Int32VectorWriter *alignment_writer,
Int32VectorWriter *words_writer,
CompactLatticeWriter *compact_lattice_writer,
LatticeWriter *lattice_writer,
double *like_ptr) { // puts utterance's like in like_ptr on success.
using fst::VectorFst;
if (!decoder.Decode(&decodable)) {
KALDI_WARN << "Failed to decode file " << utt;
return false;
}
if (!decoder.ReachedFinal()) {
if (allow_partial) {
KALDI_WARN << "Outputting partial output for utterance " << utt
<< " since no final-state reached\n";
} else {
KALDI_WARN << "Not producing output for utterance " << utt
<< " since no final-state reached and "
<< "--allow-partial=false.\n";
return false;
}
}
double likelihood;
LatticeWeight weight;
int32 num_frames;
{ // First do some stuff with word-level traceback...
VectorFst<LatticeArc> decoded;
decoder.GetBestPath(&decoded);
if (decoded.NumStates() == 0)
// Shouldn't really reach this point as already checked success.
KALDI_ERR << "Failed to get traceback for utterance " << utt;
std::vector<int32> alignment;
std::vector<int32> words;
GetLinearSymbolSequence(decoded, &alignment, &words, &weight);
num_frames = alignment.size();
if (words_writer->IsOpen())
words_writer->Write(utt, words);
if (alignment_writer->IsOpen())
alignment_writer->Write(utt, alignment);
if (word_syms != NULL) {
std::cerr << utt << ' ';
for (size_t i = 0; i < words.size(); i++) {
std::string s = word_syms->Find(words[i]);
if (s == "")
KALDI_ERR << "Word-id " << words[i] <<" not in symbol table.";
std::cerr << s << ' ';
}
std::cerr << '\n';
}
likelihood = -(weight.Value1() + weight.Value2());
}
// Get lattice, and do determinization if requested.
Lattice lat;
decoder.GetRawLattice(&lat);
if (lat.NumStates() == 0)
KALDI_ERR << "Unexpected problem getting lattice for utterance " << utt;
fst::Connect(&lat);
if (determinize) {
CompactLattice clat;
if (!DeterminizeLatticePhonePrunedWrapper(
trans_model,
&lat,
decoder.GetOptions().lattice_beam,
&clat,
decoder.GetOptions().det_opts))
KALDI_WARN << "Determinization finished earlier than the beam for "
<< "utterance " << utt;
// We'll write the lattice without acoustic scaling.
if (acoustic_scale != 0.0)
fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &clat);
compact_lattice_writer->Write(utt, clat);
} else {
Lattice fst;
decoder.GetRawLattice(&fst);
if (fst.NumStates() == 0)
KALDI_ERR << "Unexpected problem getting lattice for utterance "
<< utt;
fst::Connect(&fst); // Will get rid of this later... shouldn't have any
// disconnected states there, but we seem to.
if (acoustic_scale != 0.0) // We'll write the lattice without acoustic scaling
fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &fst);
lattice_writer->Write(utt, fst);
}
KALDI_LOG << "Log-like per frame for utterance " << utt << " is "
<< (likelihood / num_frames) << " over "
<< num_frames << " frames.";
KALDI_VLOG(2) << "Cost for utterance " << utt << " is "
<< weight.Value1() << " + " << weight.Value2();
*like_ptr = likelihood;
return true;
}
}
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
typedef kaldi::int32 int32;
using fst::SymbolTable;
using fst::VectorFst;
using fst::Fst;
using fst::StdArc;
using fst::ReadFstKaldi;
const char *usage =
"Generate lattices using GMM-based model.\n"
"User supplies LM used to generate decoding graph, and desired LM;\n"
"this decoder applies the difference during decoding\n"
"Usage: gmm-latgen-biglm-faster [options] model-in (fst-in|fsts-rspecifier) "
"oldlm-fst-in newlm-fst-in features-rspecifier"
" lattice-wspecifier [ words-wspecifier [alignments-wspecifier] ]\n";
ParseOptions po(usage);
Timer timer;
bool allow_partial = false;
BaseFloat acoustic_scale = 0.1;
LatticeBiglmFasterDecoderConfig config;
std::string word_syms_filename;
config.Register(&po);
po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods");
po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]");
po.Register("allow-partial", &allow_partial, "If true, produce output even if end state was not reached.");
po.Read(argc, argv);
if (po.NumArgs() < 6 || po.NumArgs() > 8) {
po.PrintUsage();
exit(1);
}
std::string model_in_filename = po.GetArg(1),
fst_in_str = po.GetArg(2),
old_lm_fst_rxfilename = po.GetArg(3),
new_lm_fst_rxfilename = po.GetArg(4),
feature_rspecifier = po.GetArg(5),
lattice_wspecifier = po.GetArg(6),
words_wspecifier = po.GetOptArg(7),
alignment_wspecifier = po.GetOptArg(8);
TransitionModel trans_model;
AmDiagGmm am_gmm;
{
bool binary;
Input ki(model_in_filename, &binary);
trans_model.Read(ki.Stream(), binary);
am_gmm.Read(ki.Stream(), binary);
}
VectorFst<StdArc> *old_lm_fst = fst::CastOrConvertToVectorFst(
fst::ReadFstKaldiGeneric(old_lm_fst_rxfilename));
ApplyProbabilityScale(-1.0, old_lm_fst); // Negate old LM probs...
VectorFst<StdArc> *new_lm_fst = fst::CastOrConvertToVectorFst(
fst::ReadFstKaldiGeneric(new_lm_fst_rxfilename));
fst::BackoffDeterministicOnDemandFst<StdArc> old_lm_dfst(*old_lm_fst);
fst::BackoffDeterministicOnDemandFst<StdArc> new_lm_dfst(*new_lm_fst);
fst::ComposeDeterministicOnDemandFst<StdArc> compose_dfst(&old_lm_dfst,
&new_lm_dfst);
fst::CacheDeterministicOnDemandFst<StdArc> cache_dfst(&compose_dfst);
bool determinize = config.determinize_lattice;
CompactLatticeWriter compact_lattice_writer;
LatticeWriter lattice_writer;
if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier)
: lattice_writer.Open(lattice_wspecifier)))
KALDI_ERR << "Could not open table for writing lattices: "
<< lattice_wspecifier;
Int32VectorWriter words_writer(words_wspecifier);
Int32VectorWriter alignment_writer(alignment_wspecifier);
fst::SymbolTable *word_syms = NULL;
if (word_syms_filename != "")
if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_filename;
double tot_like = 0.0;
kaldi::int64 frame_count = 0;
int num_success = 0, num_fail = 0;
if (ClassifyRspecifier(fst_in_str, NULL, NULL) == kNoRspecifier) {
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
// Input FST is just one FST, not a table of FSTs.
Fst<StdArc> *decode_fst = fst::ReadFstKaldiGeneric(fst_in_str);
{
LatticeBiglmFasterDecoder decoder(*decode_fst, config, &cache_dfst);
for (; !feature_reader.Done(); feature_reader.Next()) {
std::string utt = feature_reader.Key();
Matrix<BaseFloat> features (feature_reader.Value());
feature_reader.FreeCurrent();
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_fail++;
continue;
}
DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features,
acoustic_scale);
double like;
if (DecodeUtterance(decoder, gmm_decodable, trans_model, word_syms,
utt, acoustic_scale, determinize, allow_partial,
&alignment_writer, &words_writer,
&compact_lattice_writer, &lattice_writer,
&like)) {
tot_like += like;
frame_count += features.NumRows();
num_success++;
} else num_fail++;
}
}
delete decode_fst; // delete this only after decoder goes out of scope.
} else { // We have different FSTs for different utterances.
SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_in_str);
RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
for (; !fst_reader.Done(); fst_reader.Next()) {
std::string utt = fst_reader.Key();
if (!feature_reader.HasKey(utt)) {
KALDI_WARN << "Not decoding utterance " << utt
<< " because no features available.";
num_fail++;
continue;
}
const Matrix<BaseFloat> &features = feature_reader.Value(utt);
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_fail++;
continue;
}
LatticeBiglmFasterDecoder decoder(fst_reader.Value(), config,
&cache_dfst);
DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features,
acoustic_scale);
double like;
if (DecodeUtterance(decoder, gmm_decodable, trans_model, word_syms, utt,
acoustic_scale, determinize, allow_partial,
&alignment_writer, &words_writer,
&compact_lattice_writer, &lattice_writer,
&like)) {
tot_like += like;
frame_count += features.NumRows();
num_success++;
} else num_fail++;
}
}
double elapsed = timer.Elapsed();
KALDI_LOG << "Time taken "<< elapsed
<< "s: real-time factor assuming 100 frames/sec is "
<< (elapsed*100.0/frame_count);
KALDI_LOG << "Done " << num_success << " utterances, failed for "
<< num_fail;
KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over "
<< frame_count<<" frames.";
delete word_syms;
if (num_success != 0) return 0;
else return 1;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}