Blame view
src/ivectorbin/ivector-plda-scoring-dense.cc
7.93 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
// ivectorbin/ivector-plda-scoring-dense.cc // Copyright 2016-2018 David Snyder // 2017-2018 Matthew Maciejewski // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "util/stl-utils.h" #include "ivector/plda.h" namespace kaldi { bool EstPca(const Matrix<BaseFloat> &ivector_mat, BaseFloat target_energy, const std::string &reco, Matrix<BaseFloat> *mat) { // If the target_energy is 1.0, it's equivalent to not applying the // conversation-dependent PCA at all, so it's better to exit this // function before doing any computation. if (ApproxEqual(target_energy, 1.0, 0.001)) return false; int32 num_rows = ivector_mat.NumRows(), num_cols = ivector_mat.NumCols(); Vector<BaseFloat> sum; SpMatrix<BaseFloat> sumsq; sum.Resize(num_cols); sumsq.Resize(num_cols); sum.AddRowSumMat(1.0, ivector_mat); sumsq.AddMat2(1.0, ivector_mat, kTrans, 1.0); sum.Scale(1.0 / num_rows); sumsq.Scale(1.0 / num_rows); sumsq.AddVec2(-1.0, sum); // now sumsq is centered covariance. int32 full_dim = sum.Dim(); Matrix<BaseFloat> P(full_dim, full_dim); Vector<BaseFloat> s(full_dim); try { if (num_rows > num_cols) sumsq.Eig(&s, &P); else Matrix<BaseFloat>(sumsq).Svd(&s, &P, NULL); } catch (...) { KALDI_WARN << "Unable to compute conversation dependent PCA for" << " recording " << reco << "."; return false; } SortSvd(&s, &P); Matrix<BaseFloat> transform(P, kTrans); // Transpose of P. This is what // appears in the transform. // We want the PCA transform to retain target_energy amount of the total // energy. BaseFloat total_energy = s.Sum(); BaseFloat energy = 0.0; int32 dim = 1; while (energy / total_energy <= target_energy) { energy += s(dim-1); dim++; } Matrix<BaseFloat> transform_float(transform); mat->Resize(transform.NumCols(), transform.NumRows()); mat->CopyFromMat(transform); mat->Resize(dim, transform_float.NumCols(), kCopyData); return true; } // Transforms i-vectors using the PLDA model. void TransformIvectors(const Matrix<BaseFloat> &ivectors_in, const PldaConfig &plda_config, const Plda &plda, Matrix<BaseFloat> *ivectors_out) { int32 dim = plda.Dim(); ivectors_out->Resize(ivectors_in.NumRows(), dim); for (int32 i = 0; i < ivectors_in.NumRows(); i++) { Vector<BaseFloat> transformed_ivector(dim); plda.TransformIvector(plda_config, ivectors_in.Row(i), 1.0, &transformed_ivector); ivectors_out->Row(i).CopyFromVec(transformed_ivector); } } // Transform the i-vectors using the recording-dependent PCA matrix. void ApplyPca(const Matrix<BaseFloat> &ivectors_in, const Matrix<BaseFloat> &pca_mat, Matrix<BaseFloat> *ivectors_out) { int32 transform_cols = pca_mat.NumCols(), transform_rows = pca_mat.NumRows(), feat_dim = ivectors_in.NumCols(); ivectors_out->Resize(ivectors_in.NumRows(), transform_rows); KALDI_ASSERT(transform_cols == feat_dim); ivectors_out->AddMatMat(1.0, ivectors_in, kNoTrans, pca_mat, kTrans, 0.0); } } // namespace kaldi int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Perform PLDA scoring for speaker diarization. The input reco2utt " "should be of the form <recording-id> <seg1> <seg2> ... <segN> and " "there should be one iVector for each segment. PLDA scoring is " "performed between all pairs of iVectors in a recording and outputs " "an archive of score matrices, one for each recording-id. The rows " "and columns of the the matrix correspond the sorted order of the " "segments. " "Usage: ivector-plda-scoring-dense [options] <plda> <reco2utt>" " <ivectors-rspecifier> <scores-wspecifier> " "e.g.: " " ivector-plda-scoring-dense plda reco2utt scp:ivectors.scp" " ark:scores.ark ark,t:ivectors.1.ark "; ParseOptions po(usage); BaseFloat target_energy = 0.5; PldaConfig plda_config; plda_config.Register(&po); po.Register("target-energy", &target_energy, "Reduce dimensionality of i-vectors using a recording-dependent" " PCA such that this fraction of the total energy remains."); KALDI_ASSERT(target_energy <= 1.0); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string plda_rxfilename = po.GetArg(1), reco2utt_rspecifier = po.GetArg(2), ivector_rspecifier = po.GetArg(3), scores_wspecifier = po.GetArg(4); Plda plda; ReadKaldiObject(plda_rxfilename, &plda); SequentialTokenVectorReader reco2utt_reader(reco2utt_rspecifier); RandomAccessBaseFloatVectorReader ivector_reader(ivector_rspecifier); BaseFloatMatrixWriter scores_writer(scores_wspecifier); int32 num_reco_err = 0, num_reco_done = 0; for (; !reco2utt_reader.Done(); reco2utt_reader.Next()) { Plda this_plda(plda); std::string reco = reco2utt_reader.Key(); std::vector<std::string> uttlist = reco2utt_reader.Value(); std::vector<Vector<BaseFloat> > ivectors; for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!ivector_reader.HasKey(utt)) { KALDI_ERR << "No iVector present in input for utterance " << utt; } Vector<BaseFloat> ivector = ivector_reader.Value(utt); ivectors.push_back(ivector); } if (ivectors.size() == 0) { KALDI_WARN << "Not producing output for recording " << reco << " since no segments had iVectors"; num_reco_err++; } else { Matrix<BaseFloat> ivector_mat(ivectors.size(), ivectors[0].Dim()), ivector_mat_pca, ivector_mat_plda, pca_transform, scores(ivectors.size(), ivectors.size()); for (size_t i = 0; i < ivectors.size(); i++) { ivector_mat.Row(i).CopyFromVec(ivectors[i]); } if (EstPca(ivector_mat, target_energy, reco, &pca_transform)) { // Apply the PCA transform to the raw i-vectors. ApplyPca(ivector_mat, pca_transform, &ivector_mat_pca); // Apply the PCA transform to the parameters of the PLDA model. this_plda.ApplyTransform(Matrix<double>(pca_transform)); // Now transform the i-vectors using the reduced PLDA model. TransformIvectors(ivector_mat_pca, plda_config, this_plda, &ivector_mat_plda); } else { // If EstPca returns false, we won't apply any PCA. TransformIvectors(ivector_mat, plda_config, this_plda, &ivector_mat_plda); } for (int32 i = 0; i < ivector_mat_plda.NumRows(); i++) { for (int32 j = 0; j < ivector_mat_plda.NumRows(); j++) { scores(i, j) = this_plda.LogLikelihoodRatio(Vector<double>( ivector_mat_plda.Row(i)), 1.0, Vector<double>(ivector_mat_plda.Row(j))); } } scores_writer.Write(reco, scores); num_reco_done++; } } KALDI_LOG << "Processed " << num_reco_done << " recordings, " << num_reco_err << " had errors."; return (num_reco_done != 0 ? 0 : 1 ); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |