ivector-plda-scoring-dense.cc
7.93 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// ivectorbin/ivector-plda-scoring-dense.cc
// Copyright 2016-2018 David Snyder
// 2017-2018 Matthew Maciejewski
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "util/stl-utils.h"
#include "ivector/plda.h"
namespace kaldi {
bool EstPca(const Matrix<BaseFloat> &ivector_mat, BaseFloat target_energy,
const std::string &reco, Matrix<BaseFloat> *mat) {
// If the target_energy is 1.0, it's equivalent to not applying the
// conversation-dependent PCA at all, so it's better to exit this
// function before doing any computation.
if (ApproxEqual(target_energy, 1.0, 0.001))
return false;
int32 num_rows = ivector_mat.NumRows(),
num_cols = ivector_mat.NumCols();
Vector<BaseFloat> sum;
SpMatrix<BaseFloat> sumsq;
sum.Resize(num_cols);
sumsq.Resize(num_cols);
sum.AddRowSumMat(1.0, ivector_mat);
sumsq.AddMat2(1.0, ivector_mat, kTrans, 1.0);
sum.Scale(1.0 / num_rows);
sumsq.Scale(1.0 / num_rows);
sumsq.AddVec2(-1.0, sum); // now sumsq is centered covariance.
int32 full_dim = sum.Dim();
Matrix<BaseFloat> P(full_dim, full_dim);
Vector<BaseFloat> s(full_dim);
try {
if (num_rows > num_cols)
sumsq.Eig(&s, &P);
else
Matrix<BaseFloat>(sumsq).Svd(&s, &P, NULL);
} catch (...) {
KALDI_WARN << "Unable to compute conversation dependent PCA for"
<< " recording " << reco << ".";
return false;
}
SortSvd(&s, &P);
Matrix<BaseFloat> transform(P, kTrans); // Transpose of P. This is what
// appears in the transform.
// We want the PCA transform to retain target_energy amount of the total
// energy.
BaseFloat total_energy = s.Sum();
BaseFloat energy = 0.0;
int32 dim = 1;
while (energy / total_energy <= target_energy) {
energy += s(dim-1);
dim++;
}
Matrix<BaseFloat> transform_float(transform);
mat->Resize(transform.NumCols(), transform.NumRows());
mat->CopyFromMat(transform);
mat->Resize(dim, transform_float.NumCols(), kCopyData);
return true;
}
// Transforms i-vectors using the PLDA model.
void TransformIvectors(const Matrix<BaseFloat> &ivectors_in,
const PldaConfig &plda_config, const Plda &plda,
Matrix<BaseFloat> *ivectors_out) {
int32 dim = plda.Dim();
ivectors_out->Resize(ivectors_in.NumRows(), dim);
for (int32 i = 0; i < ivectors_in.NumRows(); i++) {
Vector<BaseFloat> transformed_ivector(dim);
plda.TransformIvector(plda_config, ivectors_in.Row(i), 1.0,
&transformed_ivector);
ivectors_out->Row(i).CopyFromVec(transformed_ivector);
}
}
// Transform the i-vectors using the recording-dependent PCA matrix.
void ApplyPca(const Matrix<BaseFloat> &ivectors_in,
const Matrix<BaseFloat> &pca_mat, Matrix<BaseFloat> *ivectors_out) {
int32 transform_cols = pca_mat.NumCols(),
transform_rows = pca_mat.NumRows(),
feat_dim = ivectors_in.NumCols();
ivectors_out->Resize(ivectors_in.NumRows(), transform_rows);
KALDI_ASSERT(transform_cols == feat_dim);
ivectors_out->AddMatMat(1.0, ivectors_in, kNoTrans,
pca_mat, kTrans, 0.0);
}
} // namespace kaldi
int main(int argc, char *argv[]) {
using namespace kaldi;
typedef kaldi::int32 int32;
try {
const char *usage =
"Perform PLDA scoring for speaker diarization. The input reco2utt\n"
"should be of the form <recording-id> <seg1> <seg2> ... <segN> and\n"
"there should be one iVector for each segment. PLDA scoring is\n"
"performed between all pairs of iVectors in a recording and outputs\n"
"an archive of score matrices, one for each recording-id. The rows\n"
"and columns of the the matrix correspond the sorted order of the\n"
"segments.\n"
"Usage: ivector-plda-scoring-dense [options] <plda> <reco2utt>"
" <ivectors-rspecifier> <scores-wspecifier>\n"
"e.g.: \n"
" ivector-plda-scoring-dense plda reco2utt scp:ivectors.scp"
" ark:scores.ark ark,t:ivectors.1.ark\n";
ParseOptions po(usage);
BaseFloat target_energy = 0.5;
PldaConfig plda_config;
plda_config.Register(&po);
po.Register("target-energy", &target_energy,
"Reduce dimensionality of i-vectors using a recording-dependent"
" PCA such that this fraction of the total energy remains.");
KALDI_ASSERT(target_energy <= 1.0);
po.Read(argc, argv);
if (po.NumArgs() != 4) {
po.PrintUsage();
exit(1);
}
std::string plda_rxfilename = po.GetArg(1),
reco2utt_rspecifier = po.GetArg(2),
ivector_rspecifier = po.GetArg(3),
scores_wspecifier = po.GetArg(4);
Plda plda;
ReadKaldiObject(plda_rxfilename, &plda);
SequentialTokenVectorReader reco2utt_reader(reco2utt_rspecifier);
RandomAccessBaseFloatVectorReader ivector_reader(ivector_rspecifier);
BaseFloatMatrixWriter scores_writer(scores_wspecifier);
int32 num_reco_err = 0,
num_reco_done = 0;
for (; !reco2utt_reader.Done(); reco2utt_reader.Next()) {
Plda this_plda(plda);
std::string reco = reco2utt_reader.Key();
std::vector<std::string> uttlist = reco2utt_reader.Value();
std::vector<Vector<BaseFloat> > ivectors;
for (size_t i = 0; i < uttlist.size(); i++) {
std::string utt = uttlist[i];
if (!ivector_reader.HasKey(utt)) {
KALDI_ERR << "No iVector present in input for utterance " << utt;
}
Vector<BaseFloat> ivector = ivector_reader.Value(utt);
ivectors.push_back(ivector);
}
if (ivectors.size() == 0) {
KALDI_WARN << "Not producing output for recording " << reco
<< " since no segments had iVectors";
num_reco_err++;
} else {
Matrix<BaseFloat> ivector_mat(ivectors.size(), ivectors[0].Dim()),
ivector_mat_pca,
ivector_mat_plda,
pca_transform,
scores(ivectors.size(), ivectors.size());
for (size_t i = 0; i < ivectors.size(); i++) {
ivector_mat.Row(i).CopyFromVec(ivectors[i]);
}
if (EstPca(ivector_mat, target_energy, reco, &pca_transform)) {
// Apply the PCA transform to the raw i-vectors.
ApplyPca(ivector_mat, pca_transform, &ivector_mat_pca);
// Apply the PCA transform to the parameters of the PLDA model.
this_plda.ApplyTransform(Matrix<double>(pca_transform));
// Now transform the i-vectors using the reduced PLDA model.
TransformIvectors(ivector_mat_pca, plda_config, this_plda,
&ivector_mat_plda);
} else {
// If EstPca returns false, we won't apply any PCA.
TransformIvectors(ivector_mat, plda_config, this_plda,
&ivector_mat_plda);
}
for (int32 i = 0; i < ivector_mat_plda.NumRows(); i++) {
for (int32 j = 0; j < ivector_mat_plda.NumRows(); j++) {
scores(i, j) = this_plda.LogLikelihoodRatio(Vector<double>(
ivector_mat_plda.Row(i)), 1.0,
Vector<double>(ivector_mat_plda.Row(j)));
}
}
scores_writer.Write(reco, scores);
num_reco_done++;
}
}
KALDI_LOG << "Processed " << num_reco_done << " recordings, "
<< num_reco_err << " had errors.";
return (num_reco_done != 0 ? 0 : 1 );
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}