Blame view

src/nnet2bin/nnet-am-switch-preconditioning.cc 3.54 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  // nnet2bin/nnet-am-switch-preconditioning.cc
  
  // Copyright 2012  Johns Hopkins University (author:  Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "nnet2/am-nnet.h"
  #include "hmm/transition-model.h"
  #include "tree/context-dep.h"
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet2;
      typedef kaldi::int32 int32;
  
      const char *usage =
          "Copy a (cpu-based) neural net and its associated transition model,
  "
          "and switch it to online preconditioning, i.e. change any components
  "
          "derived from AffineComponent to components of type
  "
          "AffineComponentPreconditionedOnline.
  "
          "
  "
          "Usage:  nnet-am-switch-preconditioning [options] <nnet-in> <nnet-out>
  "
          "e.g.:
  "
          " nnet-am-switch-preconditioning --binary=false 1.mdl text.mdl
  ";
  
      int32 rank_in = 20, rank_out = 80, update_period = 4;
      BaseFloat num_samples_history = 2000.0;
      BaseFloat alpha = 4.0;
      bool binary_write = true;
      
      ParseOptions po(usage);
      po.Register("binary", &binary_write, "Write output in binary mode");
      po.Register("rank-in", &rank_in,
                  "Rank used in online-preconditioning on input side of each layer");
      po.Register("rank-out", &rank_out,
                  "Rank used in online-preconditioning on output side of each layer");
      po.Register("update-period", &update_period,
                  "Affects how frequently we update the Fisher-matrix estimate (every "
                  "this-many minibatches).");
      po.Register("num-samples-history", &num_samples_history,
                  "Number of samples of history to use in online preconditioning "
                  "(affects speed vs accuracy of update of Fisher matrix)");
      po.Register("alpha", &alpha,
                  "Parameter that affects amount of smoothing with unit matrix "
                  "in online preconditioning (larger -> more smoothing)");
      
      po.Read(argc, argv);
      
      if (po.NumArgs() != 2) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string nnet_rxfilename = po.GetArg(1),
          nnet_wxfilename = po.GetArg(2);
      
      TransitionModel trans_model;
      AmNnet am_nnet;
      {
        bool binary;
        Input ki(nnet_rxfilename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_nnet.Read(ki.Stream(), binary);
      }
  
      am_nnet.GetNnet().SwitchToOnlinePreconditioning(rank_in, rank_out, update_period,
                                                      num_samples_history, alpha);
      
      {
        Output ko(nnet_wxfilename, binary_write);
        trans_model.Write(ko.Stream(), binary_write);
        am_nnet.Write(ko.Stream(), binary_write);
      }
      KALDI_LOG << "Copied neural net from " << nnet_rxfilename
                << " to " << nnet_wxfilename;
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what() << '
  ';
      return -1;
    }
  }