Blame view
src/nnet2bin/nnet-am-switch-preconditioning.cc
3.54 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
// nnet2bin/nnet-am-switch-preconditioning.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet2/am-nnet.h" #include "hmm/transition-model.h" #include "tree/context-dep.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; const char *usage = "Copy a (cpu-based) neural net and its associated transition model, " "and switch it to online preconditioning, i.e. change any components " "derived from AffineComponent to components of type " "AffineComponentPreconditionedOnline. " " " "Usage: nnet-am-switch-preconditioning [options] <nnet-in> <nnet-out> " "e.g.: " " nnet-am-switch-preconditioning --binary=false 1.mdl text.mdl "; int32 rank_in = 20, rank_out = 80, update_period = 4; BaseFloat num_samples_history = 2000.0; BaseFloat alpha = 4.0; bool binary_write = true; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("rank-in", &rank_in, "Rank used in online-preconditioning on input side of each layer"); po.Register("rank-out", &rank_out, "Rank used in online-preconditioning on output side of each layer"); po.Register("update-period", &update_period, "Affects how frequently we update the Fisher-matrix estimate (every " "this-many minibatches)."); po.Register("num-samples-history", &num_samples_history, "Number of samples of history to use in online preconditioning " "(affects speed vs accuracy of update of Fisher matrix)"); po.Register("alpha", &alpha, "Parameter that affects amount of smoothing with unit matrix " "in online preconditioning (larger -> more smoothing)"); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), nnet_wxfilename = po.GetArg(2); TransitionModel trans_model; AmNnet am_nnet; { bool binary; Input ki(nnet_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } am_nnet.GetNnet().SwitchToOnlinePreconditioning(rank_in, rank_out, update_period, num_samples_history, alpha); { Output ko(nnet_wxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_nnet.Write(ko.Stream(), binary_write); } KALDI_LOG << "Copied neural net from " << nnet_rxfilename << " to " << nnet_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |