nnet-am-switch-preconditioning.cc
3.54 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
// nnet2bin/nnet-am-switch-preconditioning.cc
// Copyright 2012 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "nnet2/am-nnet.h"
#include "hmm/transition-model.h"
#include "tree/context-dep.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet2;
typedef kaldi::int32 int32;
const char *usage =
"Copy a (cpu-based) neural net and its associated transition model,\n"
"and switch it to online preconditioning, i.e. change any components\n"
"derived from AffineComponent to components of type\n"
"AffineComponentPreconditionedOnline.\n"
"\n"
"Usage: nnet-am-switch-preconditioning [options] <nnet-in> <nnet-out>\n"
"e.g.:\n"
" nnet-am-switch-preconditioning --binary=false 1.mdl text.mdl\n";
int32 rank_in = 20, rank_out = 80, update_period = 4;
BaseFloat num_samples_history = 2000.0;
BaseFloat alpha = 4.0;
bool binary_write = true;
ParseOptions po(usage);
po.Register("binary", &binary_write, "Write output in binary mode");
po.Register("rank-in", &rank_in,
"Rank used in online-preconditioning on input side of each layer");
po.Register("rank-out", &rank_out,
"Rank used in online-preconditioning on output side of each layer");
po.Register("update-period", &update_period,
"Affects how frequently we update the Fisher-matrix estimate (every "
"this-many minibatches).");
po.Register("num-samples-history", &num_samples_history,
"Number of samples of history to use in online preconditioning "
"(affects speed vs accuracy of update of Fisher matrix)");
po.Register("alpha", &alpha,
"Parameter that affects amount of smoothing with unit matrix "
"in online preconditioning (larger -> more smoothing)");
po.Read(argc, argv);
if (po.NumArgs() != 2) {
po.PrintUsage();
exit(1);
}
std::string nnet_rxfilename = po.GetArg(1),
nnet_wxfilename = po.GetArg(2);
TransitionModel trans_model;
AmNnet am_nnet;
{
bool binary;
Input ki(nnet_rxfilename, &binary);
trans_model.Read(ki.Stream(), binary);
am_nnet.Read(ki.Stream(), binary);
}
am_nnet.GetNnet().SwitchToOnlinePreconditioning(rank_in, rank_out, update_period,
num_samples_history, alpha);
{
Output ko(nnet_wxfilename, binary_write);
trans_model.Write(ko.Stream(), binary_write);
am_nnet.Write(ko.Stream(), binary_write);
}
KALDI_LOG << "Copied neural net from " << nnet_rxfilename
<< " to " << nnet_wxfilename;
return 0;
} catch(const std::exception &e) {
std::cerr << e.what() << '\n';
return -1;
}
}