Blame view

tools/cub-1.8.0/cub/agent/agent_rle.cuh 34.8 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
  /******************************************************************************
   * Copyright (c) 2011, Duane Merrill.  All rights reserved.
   * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions are met:
   *     * Redistributions of source code must retain the above copyright
   *       notice, this list of conditions and the following disclaimer.
   *     * Redistributions in binary form must reproduce the above copyright
   *       notice, this list of conditions and the following disclaimer in the
   *       documentation and/or other materials provided with the distribution.
   *     * Neither the name of the NVIDIA CORPORATION nor the
   *       names of its contributors may be used to endorse or promote products
   *       derived from this software without specific prior written permission.
   *
   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   ******************************************************************************/
  
  /**
   * \file
   * cub::AgentRle implements a stateful abstraction of CUDA thread blocks for participating in device-wide run-length-encode.
   */
  
  #pragma once
  
  #include <iterator>
  
  #include "single_pass_scan_operators.cuh"
  #include "../block/block_load.cuh"
  #include "../block/block_store.cuh"
  #include "../block/block_scan.cuh"
  #include "../block/block_exchange.cuh"
  #include "../block/block_discontinuity.cuh"
  #include "../grid/grid_queue.cuh"
  #include "../iterator/cache_modified_input_iterator.cuh"
  #include "../iterator/constant_input_iterator.cuh"
  #include "../util_namespace.cuh"
  
  /// Optional outer namespace(s)
  CUB_NS_PREFIX
  
  /// CUB namespace
  namespace cub {
  
  
  /******************************************************************************
   * Tuning policy types
   ******************************************************************************/
  
  /**
   * Parameterizable tuning policy type for AgentRle
   */
  template <
      int                         _BLOCK_THREADS,                 ///< Threads per thread block
      int                         _ITEMS_PER_THREAD,              ///< Items per thread (per tile of input)
      BlockLoadAlgorithm          _LOAD_ALGORITHM,                ///< The BlockLoad algorithm to use
      CacheLoadModifier           _LOAD_MODIFIER,                 ///< Cache load modifier for reading input elements
      bool                        _STORE_WARP_TIME_SLICING,       ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any store-related data transpositions (versus each warp having its own storage)
      BlockScanAlgorithm          _SCAN_ALGORITHM>                ///< The BlockScan algorithm to use
  struct AgentRlePolicy
  {
      enum
      {
          BLOCK_THREADS           = _BLOCK_THREADS,               ///< Threads per thread block
          ITEMS_PER_THREAD        = _ITEMS_PER_THREAD,            ///< Items per thread (per tile of input)
          STORE_WARP_TIME_SLICING = _STORE_WARP_TIME_SLICING,     ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any store-related data transpositions (versus each warp having its own storage)
      };
  
      static const BlockLoadAlgorithm     LOAD_ALGORITHM          = _LOAD_ALGORITHM;      ///< The BlockLoad algorithm to use
      static const CacheLoadModifier      LOAD_MODIFIER           = _LOAD_MODIFIER;       ///< Cache load modifier for reading input elements
      static const BlockScanAlgorithm     SCAN_ALGORITHM          = _SCAN_ALGORITHM;      ///< The BlockScan algorithm to use
  };
  
  
  
  
  
  /******************************************************************************
   * Thread block abstractions
   ******************************************************************************/
  
  /**
   * \brief AgentRle implements a stateful abstraction of CUDA thread blocks for participating in device-wide run-length-encode 
   */
  template <
      typename    AgentRlePolicyT,        ///< Parameterized AgentRlePolicyT tuning policy type
      typename    InputIteratorT,         ///< Random-access input iterator type for data
      typename    OffsetsOutputIteratorT, ///< Random-access output iterator type for offset values
      typename    LengthsOutputIteratorT, ///< Random-access output iterator type for length values
      typename    EqualityOpT,            ///< T equality operator type
      typename    OffsetT>                ///< Signed integer type for global offsets
  struct AgentRle
  {
      //---------------------------------------------------------------------
      // Types and constants
      //---------------------------------------------------------------------
  
      /// The input value type
      typedef typename std::iterator_traits<InputIteratorT>::value_type T;
  
      /// The lengths output value type
      typedef typename If<(Equals<typename std::iterator_traits<LengthsOutputIteratorT>::value_type, void>::VALUE),   // LengthT =  (if output iterator's value type is void) ?
          OffsetT,                                                                                                    // ... then the OffsetT type,
          typename std::iterator_traits<LengthsOutputIteratorT>::value_type>::Type LengthT;                           // ... else the output iterator's value type
  
      /// Tuple type for scanning (pairs run-length and run-index)
      typedef KeyValuePair<OffsetT, LengthT> LengthOffsetPair;
  
      /// Tile status descriptor interface type
      typedef ReduceByKeyScanTileState<LengthT, OffsetT> ScanTileStateT;
  
      // Constants
      enum
      {
          WARP_THREADS            = CUB_WARP_THREADS(PTX_ARCH),
          BLOCK_THREADS           = AgentRlePolicyT::BLOCK_THREADS,
          ITEMS_PER_THREAD        = AgentRlePolicyT::ITEMS_PER_THREAD,
          WARP_ITEMS              = WARP_THREADS * ITEMS_PER_THREAD,
          TILE_ITEMS              = BLOCK_THREADS * ITEMS_PER_THREAD,
          WARPS                   = (BLOCK_THREADS + WARP_THREADS - 1) / WARP_THREADS,
  
          /// Whether or not to sync after loading data
          SYNC_AFTER_LOAD         = (AgentRlePolicyT::LOAD_ALGORITHM != BLOCK_LOAD_DIRECT),
  
          /// Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any store-related data transpositions (versus each warp having its own storage)
          STORE_WARP_TIME_SLICING = AgentRlePolicyT::STORE_WARP_TIME_SLICING,
          ACTIVE_EXCHANGE_WARPS   = (STORE_WARP_TIME_SLICING) ? 1 : WARPS,
      };
  
  
      /**
       * Special operator that signals all out-of-bounds items are not equal to everything else,
       * forcing both (1) the last item to be tail-flagged and (2) all oob items to be marked
       * trivial.
       */
      template <bool LAST_TILE>
      struct OobInequalityOp
      {
          OffsetT         num_remaining;
          EqualityOpT      equality_op;
  
          __device__ __forceinline__ OobInequalityOp(
              OffsetT     num_remaining,
              EqualityOpT  equality_op)
          :
              num_remaining(num_remaining),
              equality_op(equality_op)
          {}
  
          template <typename Index>
          __host__ __device__ __forceinline__ bool operator()(T first, T second, Index idx)
          {
              if (!LAST_TILE || (idx < num_remaining))
                  return !equality_op(first, second);
              else
                  return true;
          }
      };
  
  
      // Cache-modified Input iterator wrapper type (for applying cache modifier) for data
      typedef typename If<IsPointer<InputIteratorT>::VALUE,
              CacheModifiedInputIterator<AgentRlePolicyT::LOAD_MODIFIER, T, OffsetT>,      // Wrap the native input pointer with CacheModifiedVLengthnputIterator
              InputIteratorT>::Type                                                       // Directly use the supplied input iterator type
          WrappedInputIteratorT;
  
      // Parameterized BlockLoad type for data
      typedef BlockLoad<
              T,
              AgentRlePolicyT::BLOCK_THREADS,
              AgentRlePolicyT::ITEMS_PER_THREAD,
              AgentRlePolicyT::LOAD_ALGORITHM>
          BlockLoadT;
  
      // Parameterized BlockDiscontinuity type for data
      typedef BlockDiscontinuity<T, BLOCK_THREADS> BlockDiscontinuityT;
  
      // Parameterized WarpScan type
      typedef WarpScan<LengthOffsetPair> WarpScanPairs;
  
      // Reduce-length-by-run scan operator
      typedef ReduceBySegmentOp<cub::Sum> ReduceBySegmentOpT;
  
      // Callback type for obtaining tile prefix during block scan
      typedef TilePrefixCallbackOp<
              LengthOffsetPair,
              ReduceBySegmentOpT,
              ScanTileStateT>
          TilePrefixCallbackOpT;
  
      // Warp exchange types
      typedef WarpExchange<LengthOffsetPair, ITEMS_PER_THREAD>        WarpExchangePairs;
  
      typedef typename If<STORE_WARP_TIME_SLICING, typename WarpExchangePairs::TempStorage, NullType>::Type WarpExchangePairsStorage;
  
      typedef WarpExchange<OffsetT, ITEMS_PER_THREAD>                 WarpExchangeOffsets;
      typedef WarpExchange<LengthT, ITEMS_PER_THREAD>                 WarpExchangeLengths;
  
      typedef LengthOffsetPair WarpAggregates[WARPS];
  
      // Shared memory type for this thread block
      struct _TempStorage
      {
          // Aliasable storage layout
          union Aliasable
          {
              struct
              {
                  typename BlockDiscontinuityT::TempStorage       discontinuity;              // Smem needed for discontinuity detection
                  typename WarpScanPairs::TempStorage             warp_scan[WARPS];           // Smem needed for warp-synchronous scans
                  Uninitialized<LengthOffsetPair[WARPS]>          warp_aggregates;            // Smem needed for sharing warp-wide aggregates
                  typename TilePrefixCallbackOpT::TempStorage     prefix;                     // Smem needed for cooperative prefix callback
              };
  
              // Smem needed for input loading
              typename BlockLoadT::TempStorage                    load;
  
              // Aliasable layout needed for two-phase scatter
              union ScatterAliasable
              {
                  unsigned long long                              align;
                  WarpExchangePairsStorage                        exchange_pairs[ACTIVE_EXCHANGE_WARPS];
                  typename WarpExchangeOffsets::TempStorage       exchange_offsets[ACTIVE_EXCHANGE_WARPS];
                  typename WarpExchangeLengths::TempStorage       exchange_lengths[ACTIVE_EXCHANGE_WARPS];
  
              } scatter_aliasable;
  
          } aliasable;
  
          OffsetT             tile_idx;                   // Shared tile index
          LengthOffsetPair    tile_inclusive;             // Inclusive tile prefix
          LengthOffsetPair    tile_exclusive;             // Exclusive tile prefix
      };
  
      // Alias wrapper allowing storage to be unioned
      struct TempStorage : Uninitialized<_TempStorage> {};
  
  
      //---------------------------------------------------------------------
      // Per-thread fields
      //---------------------------------------------------------------------
  
      _TempStorage&                   temp_storage;       ///< Reference to temp_storage
  
      WrappedInputIteratorT           d_in;               ///< Pointer to input sequence of data items
      OffsetsOutputIteratorT          d_offsets_out;      ///< Input run offsets
      LengthsOutputIteratorT          d_lengths_out;      ///< Output run lengths
  
      EqualityOpT                     equality_op;        ///< T equality operator
      ReduceBySegmentOpT              scan_op;            ///< Reduce-length-by-flag scan operator
      OffsetT                         num_items;          ///< Total number of input items
  
  
      //---------------------------------------------------------------------
      // Constructor
      //---------------------------------------------------------------------
  
      // Constructor
      __device__ __forceinline__
      AgentRle(
          TempStorage                 &temp_storage,      ///< [in] Reference to temp_storage
          InputIteratorT              d_in,               ///< [in] Pointer to input sequence of data items
          OffsetsOutputIteratorT      d_offsets_out,      ///< [out] Pointer to output sequence of run offsets
          LengthsOutputIteratorT      d_lengths_out,      ///< [out] Pointer to output sequence of run lengths
          EqualityOpT                 equality_op,        ///< [in] T equality operator
          OffsetT                     num_items)          ///< [in] Total number of input items
      :
          temp_storage(temp_storage.Alias()),
          d_in(d_in),
          d_offsets_out(d_offsets_out),
          d_lengths_out(d_lengths_out),
          equality_op(equality_op),
          scan_op(cub::Sum()),
          num_items(num_items)
      {}
  
  
      //---------------------------------------------------------------------
      // Utility methods for initializing the selections
      //---------------------------------------------------------------------
  
      template <bool FIRST_TILE, bool LAST_TILE>
      __device__ __forceinline__ void InitializeSelections(
          OffsetT             tile_offset,
          OffsetT             num_remaining,
          T                   (&items)[ITEMS_PER_THREAD],
          LengthOffsetPair    (&lengths_and_num_runs)[ITEMS_PER_THREAD])
      {
          bool                head_flags[ITEMS_PER_THREAD];
          bool                tail_flags[ITEMS_PER_THREAD];
  
          OobInequalityOp<LAST_TILE> inequality_op(num_remaining, equality_op);
  
          if (FIRST_TILE && LAST_TILE)
          {
              // First-and-last-tile always head-flags the first item and tail-flags the last item
  
              BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails(
                  head_flags, tail_flags, items, inequality_op);
          }
          else if (FIRST_TILE)
          {
              // First-tile always head-flags the first item
  
              // Get the first item from the next tile
              T tile_successor_item;
              if (threadIdx.x == BLOCK_THREADS - 1)
                  tile_successor_item = d_in[tile_offset + TILE_ITEMS];
  
              BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails(
                  head_flags, tail_flags, tile_successor_item, items, inequality_op);
          }
          else if (LAST_TILE)
          {
              // Last-tile always flags the last item
  
              // Get the last item from the previous tile
              T tile_predecessor_item;
              if (threadIdx.x == 0)
                  tile_predecessor_item = d_in[tile_offset - 1];
  
              BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails(
                  head_flags, tile_predecessor_item, tail_flags, items, inequality_op);
          }
          else
          {
              // Get the first item from the next tile
              T tile_successor_item;
              if (threadIdx.x == BLOCK_THREADS - 1)
                  tile_successor_item = d_in[tile_offset + TILE_ITEMS];
  
              // Get the last item from the previous tile
              T tile_predecessor_item;
              if (threadIdx.x == 0)
                  tile_predecessor_item = d_in[tile_offset - 1];
  
              BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails(
                  head_flags, tile_predecessor_item, tail_flags, tile_successor_item, items, inequality_op);
          }
  
          // Zip counts and runs
          #pragma unroll
          for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
          {
              lengths_and_num_runs[ITEM].key      = head_flags[ITEM] && (!tail_flags[ITEM]);
              lengths_and_num_runs[ITEM].value    = ((!head_flags[ITEM]) || (!tail_flags[ITEM]));
          }
      }
  
      //---------------------------------------------------------------------
      // Scan utility methods
      //---------------------------------------------------------------------
  
      /**
       * Scan of allocations
       */
      __device__ __forceinline__ void WarpScanAllocations(
          LengthOffsetPair    &tile_aggregate,
          LengthOffsetPair    &warp_aggregate,
          LengthOffsetPair    &warp_exclusive_in_tile,
          LengthOffsetPair    &thread_exclusive_in_warp,
          LengthOffsetPair    (&lengths_and_num_runs)[ITEMS_PER_THREAD])
      {
          // Perform warpscans
          unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS);
          int lane_id = LaneId();
  
          LengthOffsetPair identity;
          identity.key = 0;
          identity.value = 0;
  
          LengthOffsetPair thread_inclusive;
          LengthOffsetPair thread_aggregate = internal::ThreadReduce(lengths_and_num_runs, scan_op);
          WarpScanPairs(temp_storage.aliasable.warp_scan[warp_id]).Scan(
              thread_aggregate,
              thread_inclusive,
              thread_exclusive_in_warp,
              identity,
              scan_op);
  
          // Last lane in each warp shares its warp-aggregate
          if (lane_id == WARP_THREADS - 1)
              temp_storage.aliasable.warp_aggregates.Alias()[warp_id] = thread_inclusive;
  
          CTA_SYNC();
  
          // Accumulate total selected and the warp-wide prefix
          warp_exclusive_in_tile          = identity;
          warp_aggregate                  = temp_storage.aliasable.warp_aggregates.Alias()[warp_id];
          tile_aggregate                  = temp_storage.aliasable.warp_aggregates.Alias()[0];
  
          #pragma unroll
          for (int WARP = 1; WARP < WARPS; ++WARP)
          {
              if (warp_id == WARP)
                  warp_exclusive_in_tile = tile_aggregate;
  
              tile_aggregate = scan_op(tile_aggregate, temp_storage.aliasable.warp_aggregates.Alias()[WARP]);
          }
      }
  
  
      //---------------------------------------------------------------------
      // Utility methods for scattering selections
      //---------------------------------------------------------------------
  
      /**
       * Two-phase scatter, specialized for warp time-slicing
       */
      template <bool FIRST_TILE>
      __device__ __forceinline__ void ScatterTwoPhase(
          OffsetT             tile_num_runs_exclusive_in_global,
          OffsetT             warp_num_runs_aggregate,
          OffsetT             warp_num_runs_exclusive_in_tile,
          OffsetT             (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD],
          LengthOffsetPair    (&lengths_and_offsets)[ITEMS_PER_THREAD],
          Int2Type<true>      is_warp_time_slice)
      {
          unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS);
          int lane_id = LaneId();
  
          // Locally compact items within the warp (first warp)
          if (warp_id == 0)
          {
              WarpExchangePairs(temp_storage.aliasable.scatter_aliasable.exchange_pairs[0]).ScatterToStriped(
                  lengths_and_offsets, thread_num_runs_exclusive_in_warp);
          }
  
          // Locally compact items within the warp (remaining warps)
          #pragma unroll
          for (int SLICE = 1; SLICE < WARPS; ++SLICE)
          {
              CTA_SYNC();
  
              if (warp_id == SLICE)
              {
                  WarpExchangePairs(temp_storage.aliasable.scatter_aliasable.exchange_pairs[0]).ScatterToStriped(
                      lengths_and_offsets, thread_num_runs_exclusive_in_warp);
              }
          }
  
          // Global scatter
          #pragma unroll
          for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
          {
              if ((ITEM * WARP_THREADS) < warp_num_runs_aggregate - lane_id)
              {
                  OffsetT item_offset =
                      tile_num_runs_exclusive_in_global +
                      warp_num_runs_exclusive_in_tile +
                      (ITEM * WARP_THREADS) + lane_id;
  
                  // Scatter offset
                  d_offsets_out[item_offset] = lengths_and_offsets[ITEM].key;
  
                  // Scatter length if not the first (global) length
                  if ((!FIRST_TILE) || (ITEM != 0) || (threadIdx.x > 0))
                  {
                      d_lengths_out[item_offset - 1] = lengths_and_offsets[ITEM].value;
                  }
              }
          }
      }
  
  
      /**
       * Two-phase scatter
       */
      template <bool FIRST_TILE>
      __device__ __forceinline__ void ScatterTwoPhase(
          OffsetT             tile_num_runs_exclusive_in_global,
          OffsetT             warp_num_runs_aggregate,
          OffsetT             warp_num_runs_exclusive_in_tile,
          OffsetT             (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD],
          LengthOffsetPair    (&lengths_and_offsets)[ITEMS_PER_THREAD],
          Int2Type<false>     is_warp_time_slice)
      {
          unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS);
          int lane_id = LaneId();
  
          // Unzip
          OffsetT run_offsets[ITEMS_PER_THREAD];
          LengthT run_lengths[ITEMS_PER_THREAD];
  
          #pragma unroll
          for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
          {
              run_offsets[ITEM] = lengths_and_offsets[ITEM].key;
              run_lengths[ITEM] = lengths_and_offsets[ITEM].value;
          }
  
          WarpExchangeOffsets(temp_storage.aliasable.scatter_aliasable.exchange_offsets[warp_id]).ScatterToStriped(
              run_offsets, thread_num_runs_exclusive_in_warp);
  
          WARP_SYNC(0xffffffff);
  
          WarpExchangeLengths(temp_storage.aliasable.scatter_aliasable.exchange_lengths[warp_id]).ScatterToStriped(
              run_lengths, thread_num_runs_exclusive_in_warp);
  
          // Global scatter
          #pragma unroll
          for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
          {
              if ((ITEM * WARP_THREADS) + lane_id < warp_num_runs_aggregate)
              {
                  OffsetT item_offset =
                      tile_num_runs_exclusive_in_global +
                      warp_num_runs_exclusive_in_tile +
                      (ITEM * WARP_THREADS) + lane_id;
  
                  // Scatter offset
                  d_offsets_out[item_offset] = run_offsets[ITEM];
  
                  // Scatter length if not the first (global) length
                  if ((!FIRST_TILE) || (ITEM != 0) || (threadIdx.x > 0))
                  {
                      d_lengths_out[item_offset - 1] = run_lengths[ITEM];
                  }
              }
          }
      }
  
  
      /**
       * Direct scatter
       */
      template <bool FIRST_TILE>
      __device__ __forceinline__ void ScatterDirect(
          OffsetT             tile_num_runs_exclusive_in_global,
          OffsetT             warp_num_runs_aggregate,
          OffsetT             warp_num_runs_exclusive_in_tile,
          OffsetT             (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD],
          LengthOffsetPair    (&lengths_and_offsets)[ITEMS_PER_THREAD])
      {
          #pragma unroll
          for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
          {
              if (thread_num_runs_exclusive_in_warp[ITEM] < warp_num_runs_aggregate)
              {
                  OffsetT item_offset =
                      tile_num_runs_exclusive_in_global +
                      warp_num_runs_exclusive_in_tile +
                      thread_num_runs_exclusive_in_warp[ITEM];
  
                  // Scatter offset
                  d_offsets_out[item_offset] = lengths_and_offsets[ITEM].key;
  
                  // Scatter length if not the first (global) length
                  if (item_offset >= 1)
                  {
                      d_lengths_out[item_offset - 1] = lengths_and_offsets[ITEM].value;
                  }
              }
          }
      }
  
  
      /**
       * Scatter
       */
      template <bool FIRST_TILE>
      __device__ __forceinline__ void Scatter(
          OffsetT             tile_num_runs_aggregate,
          OffsetT             tile_num_runs_exclusive_in_global,
          OffsetT             warp_num_runs_aggregate,
          OffsetT             warp_num_runs_exclusive_in_tile,
          OffsetT             (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD],
          LengthOffsetPair    (&lengths_and_offsets)[ITEMS_PER_THREAD])
      {
          if ((ITEMS_PER_THREAD == 1) || (tile_num_runs_aggregate < BLOCK_THREADS))
          {
              // Direct scatter if the warp has any items
              if (warp_num_runs_aggregate)
              {
                  ScatterDirect<FIRST_TILE>(
                      tile_num_runs_exclusive_in_global,
                      warp_num_runs_aggregate,
                      warp_num_runs_exclusive_in_tile,
                      thread_num_runs_exclusive_in_warp,
                      lengths_and_offsets);
              }
          }
          else
          {
              // Scatter two phase
              ScatterTwoPhase<FIRST_TILE>(
                  tile_num_runs_exclusive_in_global,
                  warp_num_runs_aggregate,
                  warp_num_runs_exclusive_in_tile,
                  thread_num_runs_exclusive_in_warp,
                  lengths_and_offsets,
                  Int2Type<STORE_WARP_TIME_SLICING>());
          }
      }
  
  
  
      //---------------------------------------------------------------------
      // Cooperatively scan a device-wide sequence of tiles with other CTAs
      //---------------------------------------------------------------------
  
      /**
       * Process a tile of input (dynamic chained scan)
       */
      template <
          bool                LAST_TILE>
      __device__ __forceinline__ LengthOffsetPair ConsumeTile(
          OffsetT             num_items,          ///< Total number of global input items
          OffsetT             num_remaining,      ///< Number of global input items remaining (including this tile)
          int                 tile_idx,           ///< Tile index
          OffsetT             tile_offset,        ///< Tile offset
          ScanTileStateT      &tile_status)       ///< Global list of tile status
      {
          if (tile_idx == 0)
          {
              // First tile
  
              // Load items
              T items[ITEMS_PER_THREAD];
              if (LAST_TILE)
                  BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items, num_remaining, T());
              else
                  BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items);
  
              if (SYNC_AFTER_LOAD)
                  CTA_SYNC();
  
              // Set flags
              LengthOffsetPair    lengths_and_num_runs[ITEMS_PER_THREAD];
  
              InitializeSelections<true, LAST_TILE>(
                  tile_offset,
                  num_remaining,
                  items,
                  lengths_and_num_runs);
  
              // Exclusive scan of lengths and runs
              LengthOffsetPair tile_aggregate;
              LengthOffsetPair warp_aggregate;
              LengthOffsetPair warp_exclusive_in_tile;
              LengthOffsetPair thread_exclusive_in_warp;
  
              WarpScanAllocations(
                  tile_aggregate,
                  warp_aggregate,
                  warp_exclusive_in_tile,
                  thread_exclusive_in_warp,
                  lengths_and_num_runs);
  
              // Update tile status if this is not the last tile
              if (!LAST_TILE && (threadIdx.x == 0))
                  tile_status.SetInclusive(0, tile_aggregate);
  
              // Update thread_exclusive_in_warp to fold in warp run-length
              if (thread_exclusive_in_warp.key == 0)
                  thread_exclusive_in_warp.value += warp_exclusive_in_tile.value;
  
              LengthOffsetPair    lengths_and_offsets[ITEMS_PER_THREAD];
              OffsetT             thread_num_runs_exclusive_in_warp[ITEMS_PER_THREAD];
              LengthOffsetPair    lengths_and_num_runs2[ITEMS_PER_THREAD];
  
              // Downsweep scan through lengths_and_num_runs
              internal::ThreadScanExclusive(lengths_and_num_runs, lengths_and_num_runs2, scan_op, thread_exclusive_in_warp);
  
              // Zip
  
              #pragma unroll
              for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
              {
                  lengths_and_offsets[ITEM].value         = lengths_and_num_runs2[ITEM].value;
                  lengths_and_offsets[ITEM].key        = tile_offset + (threadIdx.x * ITEMS_PER_THREAD) + ITEM;
                  thread_num_runs_exclusive_in_warp[ITEM] = (lengths_and_num_runs[ITEM].key) ?
                                                                  lengths_and_num_runs2[ITEM].key :         // keep
                                                                  WARP_THREADS * ITEMS_PER_THREAD;            // discard
              }
  
              OffsetT tile_num_runs_aggregate              = tile_aggregate.key;
              OffsetT tile_num_runs_exclusive_in_global    = 0;
              OffsetT warp_num_runs_aggregate              = warp_aggregate.key;
              OffsetT warp_num_runs_exclusive_in_tile      = warp_exclusive_in_tile.key;
  
              // Scatter
              Scatter<true>(
                  tile_num_runs_aggregate,
                  tile_num_runs_exclusive_in_global,
                  warp_num_runs_aggregate,
                  warp_num_runs_exclusive_in_tile,
                  thread_num_runs_exclusive_in_warp,
                  lengths_and_offsets);
  
              // Return running total (inclusive of this tile)
              return tile_aggregate;
          }
          else
          {
              // Not first tile
  
              // Load items
              T items[ITEMS_PER_THREAD];
              if (LAST_TILE)
                  BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items, num_remaining, T());
              else
                  BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items);
  
              if (SYNC_AFTER_LOAD)
                  CTA_SYNC();
  
              // Set flags
              LengthOffsetPair    lengths_and_num_runs[ITEMS_PER_THREAD];
  
              InitializeSelections<false, LAST_TILE>(
                  tile_offset,
                  num_remaining,
                  items,
                  lengths_and_num_runs);
  
              // Exclusive scan of lengths and runs
              LengthOffsetPair tile_aggregate;
              LengthOffsetPair warp_aggregate;
              LengthOffsetPair warp_exclusive_in_tile;
              LengthOffsetPair thread_exclusive_in_warp;
  
              WarpScanAllocations(
                  tile_aggregate,
                  warp_aggregate,
                  warp_exclusive_in_tile,
                  thread_exclusive_in_warp,
                  lengths_and_num_runs);
  
              // First warp computes tile prefix in lane 0
              TilePrefixCallbackOpT prefix_op(tile_status, temp_storage.aliasable.prefix, Sum(), tile_idx);
              unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS);
              if (warp_id == 0)
              {
                  prefix_op(tile_aggregate);
                  if (threadIdx.x == 0)
                      temp_storage.tile_exclusive = prefix_op.exclusive_prefix;
              }
  
              CTA_SYNC();
  
              LengthOffsetPair tile_exclusive_in_global = temp_storage.tile_exclusive;
  
              // Update thread_exclusive_in_warp to fold in warp and tile run-lengths
              LengthOffsetPair thread_exclusive = scan_op(tile_exclusive_in_global, warp_exclusive_in_tile);
              if (thread_exclusive_in_warp.key == 0)
                  thread_exclusive_in_warp.value += thread_exclusive.value;
  
              // Downsweep scan through lengths_and_num_runs
              LengthOffsetPair    lengths_and_num_runs2[ITEMS_PER_THREAD];
              LengthOffsetPair    lengths_and_offsets[ITEMS_PER_THREAD];
              OffsetT             thread_num_runs_exclusive_in_warp[ITEMS_PER_THREAD];
  
              internal::ThreadScanExclusive(lengths_and_num_runs, lengths_and_num_runs2, scan_op, thread_exclusive_in_warp);
  
              // Zip
              #pragma unroll
              for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
              {
                  lengths_and_offsets[ITEM].value         = lengths_and_num_runs2[ITEM].value;
                  lengths_and_offsets[ITEM].key        = tile_offset + (threadIdx.x * ITEMS_PER_THREAD) + ITEM;
                  thread_num_runs_exclusive_in_warp[ITEM] = (lengths_and_num_runs[ITEM].key) ?
                                                                  lengths_and_num_runs2[ITEM].key :         // keep
                                                                  WARP_THREADS * ITEMS_PER_THREAD;            // discard
              }
  
              OffsetT tile_num_runs_aggregate              = tile_aggregate.key;
              OffsetT tile_num_runs_exclusive_in_global    = tile_exclusive_in_global.key;
              OffsetT warp_num_runs_aggregate              = warp_aggregate.key;
              OffsetT warp_num_runs_exclusive_in_tile      = warp_exclusive_in_tile.key;
  
              // Scatter
              Scatter<false>(
                  tile_num_runs_aggregate,
                  tile_num_runs_exclusive_in_global,
                  warp_num_runs_aggregate,
                  warp_num_runs_exclusive_in_tile,
                  thread_num_runs_exclusive_in_warp,
                  lengths_and_offsets);
  
              // Return running total (inclusive of this tile)
              return prefix_op.inclusive_prefix;
          }
      }
  
  
      /**
       * Scan tiles of items as part of a dynamic chained scan
       */
      template <typename NumRunsIteratorT>            ///< Output iterator type for recording number of items selected
      __device__ __forceinline__ void ConsumeRange(
          int                 num_tiles,              ///< Total number of input tiles
          ScanTileStateT&     tile_status,            ///< Global list of tile status
          NumRunsIteratorT    d_num_runs_out)         ///< Output pointer for total number of runs identified
      {
          // Blocks are launched in increasing order, so just assign one tile per block
          int     tile_idx        = (blockIdx.x * gridDim.y) + blockIdx.y;    // Current tile index
          OffsetT tile_offset     = tile_idx * TILE_ITEMS;                  // Global offset for the current tile
          OffsetT num_remaining   = num_items - tile_offset;                  // Remaining items (including this tile)
  
          if (tile_idx < num_tiles - 1)
          {
              // Not the last tile (full)
              ConsumeTile<false>(num_items, num_remaining, tile_idx, tile_offset, tile_status);
          }
          else if (num_remaining > 0)
          {
              // The last tile (possibly partially-full)
              LengthOffsetPair running_total = ConsumeTile<true>(num_items, num_remaining, tile_idx, tile_offset, tile_status);
  
              if (threadIdx.x == 0)
              {
                  // Output the total number of items selected
                  *d_num_runs_out = running_total.key;
  
                  // The inclusive prefix contains accumulated length reduction for the last run
                  if (running_total.key > 0)
                      d_lengths_out[running_total.key - 1] = running_total.value;
              }
          }
      }
  };
  
  
  }               // CUB namespace
  CUB_NS_POSTFIX  // Optional outer namespace(s)