agent_rle.cuh 34.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * \file
 * cub::AgentRle implements a stateful abstraction of CUDA thread blocks for participating in device-wide run-length-encode.
 */

#pragma once

#include <iterator>

#include "single_pass_scan_operators.cuh"
#include "../block/block_load.cuh"
#include "../block/block_store.cuh"
#include "../block/block_scan.cuh"
#include "../block/block_exchange.cuh"
#include "../block/block_discontinuity.cuh"
#include "../grid/grid_queue.cuh"
#include "../iterator/cache_modified_input_iterator.cuh"
#include "../iterator/constant_input_iterator.cuh"
#include "../util_namespace.cuh"

/// Optional outer namespace(s)
CUB_NS_PREFIX

/// CUB namespace
namespace cub {


/******************************************************************************
 * Tuning policy types
 ******************************************************************************/

/**
 * Parameterizable tuning policy type for AgentRle
 */
template <
    int                         _BLOCK_THREADS,                 ///< Threads per thread block
    int                         _ITEMS_PER_THREAD,              ///< Items per thread (per tile of input)
    BlockLoadAlgorithm          _LOAD_ALGORITHM,                ///< The BlockLoad algorithm to use
    CacheLoadModifier           _LOAD_MODIFIER,                 ///< Cache load modifier for reading input elements
    bool                        _STORE_WARP_TIME_SLICING,       ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any store-related data transpositions (versus each warp having its own storage)
    BlockScanAlgorithm          _SCAN_ALGORITHM>                ///< The BlockScan algorithm to use
struct AgentRlePolicy
{
    enum
    {
        BLOCK_THREADS           = _BLOCK_THREADS,               ///< Threads per thread block
        ITEMS_PER_THREAD        = _ITEMS_PER_THREAD,            ///< Items per thread (per tile of input)
        STORE_WARP_TIME_SLICING = _STORE_WARP_TIME_SLICING,     ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any store-related data transpositions (versus each warp having its own storage)
    };

    static const BlockLoadAlgorithm     LOAD_ALGORITHM          = _LOAD_ALGORITHM;      ///< The BlockLoad algorithm to use
    static const CacheLoadModifier      LOAD_MODIFIER           = _LOAD_MODIFIER;       ///< Cache load modifier for reading input elements
    static const BlockScanAlgorithm     SCAN_ALGORITHM          = _SCAN_ALGORITHM;      ///< The BlockScan algorithm to use
};





/******************************************************************************
 * Thread block abstractions
 ******************************************************************************/

/**
 * \brief AgentRle implements a stateful abstraction of CUDA thread blocks for participating in device-wide run-length-encode 
 */
template <
    typename    AgentRlePolicyT,        ///< Parameterized AgentRlePolicyT tuning policy type
    typename    InputIteratorT,         ///< Random-access input iterator type for data
    typename    OffsetsOutputIteratorT, ///< Random-access output iterator type for offset values
    typename    LengthsOutputIteratorT, ///< Random-access output iterator type for length values
    typename    EqualityOpT,            ///< T equality operator type
    typename    OffsetT>                ///< Signed integer type for global offsets
struct AgentRle
{
    //---------------------------------------------------------------------
    // Types and constants
    //---------------------------------------------------------------------

    /// The input value type
    typedef typename std::iterator_traits<InputIteratorT>::value_type T;

    /// The lengths output value type
    typedef typename If<(Equals<typename std::iterator_traits<LengthsOutputIteratorT>::value_type, void>::VALUE),   // LengthT =  (if output iterator's value type is void) ?
        OffsetT,                                                                                                    // ... then the OffsetT type,
        typename std::iterator_traits<LengthsOutputIteratorT>::value_type>::Type LengthT;                           // ... else the output iterator's value type

    /// Tuple type for scanning (pairs run-length and run-index)
    typedef KeyValuePair<OffsetT, LengthT> LengthOffsetPair;

    /// Tile status descriptor interface type
    typedef ReduceByKeyScanTileState<LengthT, OffsetT> ScanTileStateT;

    // Constants
    enum
    {
        WARP_THREADS            = CUB_WARP_THREADS(PTX_ARCH),
        BLOCK_THREADS           = AgentRlePolicyT::BLOCK_THREADS,
        ITEMS_PER_THREAD        = AgentRlePolicyT::ITEMS_PER_THREAD,
        WARP_ITEMS              = WARP_THREADS * ITEMS_PER_THREAD,
        TILE_ITEMS              = BLOCK_THREADS * ITEMS_PER_THREAD,
        WARPS                   = (BLOCK_THREADS + WARP_THREADS - 1) / WARP_THREADS,

        /// Whether or not to sync after loading data
        SYNC_AFTER_LOAD         = (AgentRlePolicyT::LOAD_ALGORITHM != BLOCK_LOAD_DIRECT),

        /// Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any store-related data transpositions (versus each warp having its own storage)
        STORE_WARP_TIME_SLICING = AgentRlePolicyT::STORE_WARP_TIME_SLICING,
        ACTIVE_EXCHANGE_WARPS   = (STORE_WARP_TIME_SLICING) ? 1 : WARPS,
    };


    /**
     * Special operator that signals all out-of-bounds items are not equal to everything else,
     * forcing both (1) the last item to be tail-flagged and (2) all oob items to be marked
     * trivial.
     */
    template <bool LAST_TILE>
    struct OobInequalityOp
    {
        OffsetT         num_remaining;
        EqualityOpT      equality_op;

        __device__ __forceinline__ OobInequalityOp(
            OffsetT     num_remaining,
            EqualityOpT  equality_op)
        :
            num_remaining(num_remaining),
            equality_op(equality_op)
        {}

        template <typename Index>
        __host__ __device__ __forceinline__ bool operator()(T first, T second, Index idx)
        {
            if (!LAST_TILE || (idx < num_remaining))
                return !equality_op(first, second);
            else
                return true;
        }
    };


    // Cache-modified Input iterator wrapper type (for applying cache modifier) for data
    typedef typename If<IsPointer<InputIteratorT>::VALUE,
            CacheModifiedInputIterator<AgentRlePolicyT::LOAD_MODIFIER, T, OffsetT>,      // Wrap the native input pointer with CacheModifiedVLengthnputIterator
            InputIteratorT>::Type                                                       // Directly use the supplied input iterator type
        WrappedInputIteratorT;

    // Parameterized BlockLoad type for data
    typedef BlockLoad<
            T,
            AgentRlePolicyT::BLOCK_THREADS,
            AgentRlePolicyT::ITEMS_PER_THREAD,
            AgentRlePolicyT::LOAD_ALGORITHM>
        BlockLoadT;

    // Parameterized BlockDiscontinuity type for data
    typedef BlockDiscontinuity<T, BLOCK_THREADS> BlockDiscontinuityT;

    // Parameterized WarpScan type
    typedef WarpScan<LengthOffsetPair> WarpScanPairs;

    // Reduce-length-by-run scan operator
    typedef ReduceBySegmentOp<cub::Sum> ReduceBySegmentOpT;

    // Callback type for obtaining tile prefix during block scan
    typedef TilePrefixCallbackOp<
            LengthOffsetPair,
            ReduceBySegmentOpT,
            ScanTileStateT>
        TilePrefixCallbackOpT;

    // Warp exchange types
    typedef WarpExchange<LengthOffsetPair, ITEMS_PER_THREAD>        WarpExchangePairs;

    typedef typename If<STORE_WARP_TIME_SLICING, typename WarpExchangePairs::TempStorage, NullType>::Type WarpExchangePairsStorage;

    typedef WarpExchange<OffsetT, ITEMS_PER_THREAD>                 WarpExchangeOffsets;
    typedef WarpExchange<LengthT, ITEMS_PER_THREAD>                 WarpExchangeLengths;

    typedef LengthOffsetPair WarpAggregates[WARPS];

    // Shared memory type for this thread block
    struct _TempStorage
    {
        // Aliasable storage layout
        union Aliasable
        {
            struct
            {
                typename BlockDiscontinuityT::TempStorage       discontinuity;              // Smem needed for discontinuity detection
                typename WarpScanPairs::TempStorage             warp_scan[WARPS];           // Smem needed for warp-synchronous scans
                Uninitialized<LengthOffsetPair[WARPS]>          warp_aggregates;            // Smem needed for sharing warp-wide aggregates
                typename TilePrefixCallbackOpT::TempStorage     prefix;                     // Smem needed for cooperative prefix callback
            };

            // Smem needed for input loading
            typename BlockLoadT::TempStorage                    load;

            // Aliasable layout needed for two-phase scatter
            union ScatterAliasable
            {
                unsigned long long                              align;
                WarpExchangePairsStorage                        exchange_pairs[ACTIVE_EXCHANGE_WARPS];
                typename WarpExchangeOffsets::TempStorage       exchange_offsets[ACTIVE_EXCHANGE_WARPS];
                typename WarpExchangeLengths::TempStorage       exchange_lengths[ACTIVE_EXCHANGE_WARPS];

            } scatter_aliasable;

        } aliasable;

        OffsetT             tile_idx;                   // Shared tile index
        LengthOffsetPair    tile_inclusive;             // Inclusive tile prefix
        LengthOffsetPair    tile_exclusive;             // Exclusive tile prefix
    };

    // Alias wrapper allowing storage to be unioned
    struct TempStorage : Uninitialized<_TempStorage> {};


    //---------------------------------------------------------------------
    // Per-thread fields
    //---------------------------------------------------------------------

    _TempStorage&                   temp_storage;       ///< Reference to temp_storage

    WrappedInputIteratorT           d_in;               ///< Pointer to input sequence of data items
    OffsetsOutputIteratorT          d_offsets_out;      ///< Input run offsets
    LengthsOutputIteratorT          d_lengths_out;      ///< Output run lengths

    EqualityOpT                     equality_op;        ///< T equality operator
    ReduceBySegmentOpT              scan_op;            ///< Reduce-length-by-flag scan operator
    OffsetT                         num_items;          ///< Total number of input items


    //---------------------------------------------------------------------
    // Constructor
    //---------------------------------------------------------------------

    // Constructor
    __device__ __forceinline__
    AgentRle(
        TempStorage                 &temp_storage,      ///< [in] Reference to temp_storage
        InputIteratorT              d_in,               ///< [in] Pointer to input sequence of data items
        OffsetsOutputIteratorT      d_offsets_out,      ///< [out] Pointer to output sequence of run offsets
        LengthsOutputIteratorT      d_lengths_out,      ///< [out] Pointer to output sequence of run lengths
        EqualityOpT                 equality_op,        ///< [in] T equality operator
        OffsetT                     num_items)          ///< [in] Total number of input items
    :
        temp_storage(temp_storage.Alias()),
        d_in(d_in),
        d_offsets_out(d_offsets_out),
        d_lengths_out(d_lengths_out),
        equality_op(equality_op),
        scan_op(cub::Sum()),
        num_items(num_items)
    {}


    //---------------------------------------------------------------------
    // Utility methods for initializing the selections
    //---------------------------------------------------------------------

    template <bool FIRST_TILE, bool LAST_TILE>
    __device__ __forceinline__ void InitializeSelections(
        OffsetT             tile_offset,
        OffsetT             num_remaining,
        T                   (&items)[ITEMS_PER_THREAD],
        LengthOffsetPair    (&lengths_and_num_runs)[ITEMS_PER_THREAD])
    {
        bool                head_flags[ITEMS_PER_THREAD];
        bool                tail_flags[ITEMS_PER_THREAD];

        OobInequalityOp<LAST_TILE> inequality_op(num_remaining, equality_op);

        if (FIRST_TILE && LAST_TILE)
        {
            // First-and-last-tile always head-flags the first item and tail-flags the last item

            BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails(
                head_flags, tail_flags, items, inequality_op);
        }
        else if (FIRST_TILE)
        {
            // First-tile always head-flags the first item

            // Get the first item from the next tile
            T tile_successor_item;
            if (threadIdx.x == BLOCK_THREADS - 1)
                tile_successor_item = d_in[tile_offset + TILE_ITEMS];

            BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails(
                head_flags, tail_flags, tile_successor_item, items, inequality_op);
        }
        else if (LAST_TILE)
        {
            // Last-tile always flags the last item

            // Get the last item from the previous tile
            T tile_predecessor_item;
            if (threadIdx.x == 0)
                tile_predecessor_item = d_in[tile_offset - 1];

            BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails(
                head_flags, tile_predecessor_item, tail_flags, items, inequality_op);
        }
        else
        {
            // Get the first item from the next tile
            T tile_successor_item;
            if (threadIdx.x == BLOCK_THREADS - 1)
                tile_successor_item = d_in[tile_offset + TILE_ITEMS];

            // Get the last item from the previous tile
            T tile_predecessor_item;
            if (threadIdx.x == 0)
                tile_predecessor_item = d_in[tile_offset - 1];

            BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails(
                head_flags, tile_predecessor_item, tail_flags, tile_successor_item, items, inequality_op);
        }

        // Zip counts and runs
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            lengths_and_num_runs[ITEM].key      = head_flags[ITEM] && (!tail_flags[ITEM]);
            lengths_and_num_runs[ITEM].value    = ((!head_flags[ITEM]) || (!tail_flags[ITEM]));
        }
    }

    //---------------------------------------------------------------------
    // Scan utility methods
    //---------------------------------------------------------------------

    /**
     * Scan of allocations
     */
    __device__ __forceinline__ void WarpScanAllocations(
        LengthOffsetPair    &tile_aggregate,
        LengthOffsetPair    &warp_aggregate,
        LengthOffsetPair    &warp_exclusive_in_tile,
        LengthOffsetPair    &thread_exclusive_in_warp,
        LengthOffsetPair    (&lengths_and_num_runs)[ITEMS_PER_THREAD])
    {
        // Perform warpscans
        unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS);
        int lane_id = LaneId();

        LengthOffsetPair identity;
        identity.key = 0;
        identity.value = 0;

        LengthOffsetPair thread_inclusive;
        LengthOffsetPair thread_aggregate = internal::ThreadReduce(lengths_and_num_runs, scan_op);
        WarpScanPairs(temp_storage.aliasable.warp_scan[warp_id]).Scan(
            thread_aggregate,
            thread_inclusive,
            thread_exclusive_in_warp,
            identity,
            scan_op);

        // Last lane in each warp shares its warp-aggregate
        if (lane_id == WARP_THREADS - 1)
            temp_storage.aliasable.warp_aggregates.Alias()[warp_id] = thread_inclusive;

        CTA_SYNC();

        // Accumulate total selected and the warp-wide prefix
        warp_exclusive_in_tile          = identity;
        warp_aggregate                  = temp_storage.aliasable.warp_aggregates.Alias()[warp_id];
        tile_aggregate                  = temp_storage.aliasable.warp_aggregates.Alias()[0];

        #pragma unroll
        for (int WARP = 1; WARP < WARPS; ++WARP)
        {
            if (warp_id == WARP)
                warp_exclusive_in_tile = tile_aggregate;

            tile_aggregate = scan_op(tile_aggregate, temp_storage.aliasable.warp_aggregates.Alias()[WARP]);
        }
    }


    //---------------------------------------------------------------------
    // Utility methods for scattering selections
    //---------------------------------------------------------------------

    /**
     * Two-phase scatter, specialized for warp time-slicing
     */
    template <bool FIRST_TILE>
    __device__ __forceinline__ void ScatterTwoPhase(
        OffsetT             tile_num_runs_exclusive_in_global,
        OffsetT             warp_num_runs_aggregate,
        OffsetT             warp_num_runs_exclusive_in_tile,
        OffsetT             (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD],
        LengthOffsetPair    (&lengths_and_offsets)[ITEMS_PER_THREAD],
        Int2Type<true>      is_warp_time_slice)
    {
        unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS);
        int lane_id = LaneId();

        // Locally compact items within the warp (first warp)
        if (warp_id == 0)
        {
            WarpExchangePairs(temp_storage.aliasable.scatter_aliasable.exchange_pairs[0]).ScatterToStriped(
                lengths_and_offsets, thread_num_runs_exclusive_in_warp);
        }

        // Locally compact items within the warp (remaining warps)
        #pragma unroll
        for (int SLICE = 1; SLICE < WARPS; ++SLICE)
        {
            CTA_SYNC();

            if (warp_id == SLICE)
            {
                WarpExchangePairs(temp_storage.aliasable.scatter_aliasable.exchange_pairs[0]).ScatterToStriped(
                    lengths_and_offsets, thread_num_runs_exclusive_in_warp);
            }
        }

        // Global scatter
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
        {
            if ((ITEM * WARP_THREADS) < warp_num_runs_aggregate - lane_id)
            {
                OffsetT item_offset =
                    tile_num_runs_exclusive_in_global +
                    warp_num_runs_exclusive_in_tile +
                    (ITEM * WARP_THREADS) + lane_id;

                // Scatter offset
                d_offsets_out[item_offset] = lengths_and_offsets[ITEM].key;

                // Scatter length if not the first (global) length
                if ((!FIRST_TILE) || (ITEM != 0) || (threadIdx.x > 0))
                {
                    d_lengths_out[item_offset - 1] = lengths_and_offsets[ITEM].value;
                }
            }
        }
    }


    /**
     * Two-phase scatter
     */
    template <bool FIRST_TILE>
    __device__ __forceinline__ void ScatterTwoPhase(
        OffsetT             tile_num_runs_exclusive_in_global,
        OffsetT             warp_num_runs_aggregate,
        OffsetT             warp_num_runs_exclusive_in_tile,
        OffsetT             (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD],
        LengthOffsetPair    (&lengths_and_offsets)[ITEMS_PER_THREAD],
        Int2Type<false>     is_warp_time_slice)
    {
        unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS);
        int lane_id = LaneId();

        // Unzip
        OffsetT run_offsets[ITEMS_PER_THREAD];
        LengthT run_lengths[ITEMS_PER_THREAD];

        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
        {
            run_offsets[ITEM] = lengths_and_offsets[ITEM].key;
            run_lengths[ITEM] = lengths_and_offsets[ITEM].value;
        }

        WarpExchangeOffsets(temp_storage.aliasable.scatter_aliasable.exchange_offsets[warp_id]).ScatterToStriped(
            run_offsets, thread_num_runs_exclusive_in_warp);

        WARP_SYNC(0xffffffff);

        WarpExchangeLengths(temp_storage.aliasable.scatter_aliasable.exchange_lengths[warp_id]).ScatterToStriped(
            run_lengths, thread_num_runs_exclusive_in_warp);

        // Global scatter
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
        {
            if ((ITEM * WARP_THREADS) + lane_id < warp_num_runs_aggregate)
            {
                OffsetT item_offset =
                    tile_num_runs_exclusive_in_global +
                    warp_num_runs_exclusive_in_tile +
                    (ITEM * WARP_THREADS) + lane_id;

                // Scatter offset
                d_offsets_out[item_offset] = run_offsets[ITEM];

                // Scatter length if not the first (global) length
                if ((!FIRST_TILE) || (ITEM != 0) || (threadIdx.x > 0))
                {
                    d_lengths_out[item_offset - 1] = run_lengths[ITEM];
                }
            }
        }
    }


    /**
     * Direct scatter
     */
    template <bool FIRST_TILE>
    __device__ __forceinline__ void ScatterDirect(
        OffsetT             tile_num_runs_exclusive_in_global,
        OffsetT             warp_num_runs_aggregate,
        OffsetT             warp_num_runs_exclusive_in_tile,
        OffsetT             (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD],
        LengthOffsetPair    (&lengths_and_offsets)[ITEMS_PER_THREAD])
    {
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            if (thread_num_runs_exclusive_in_warp[ITEM] < warp_num_runs_aggregate)
            {
                OffsetT item_offset =
                    tile_num_runs_exclusive_in_global +
                    warp_num_runs_exclusive_in_tile +
                    thread_num_runs_exclusive_in_warp[ITEM];

                // Scatter offset
                d_offsets_out[item_offset] = lengths_and_offsets[ITEM].key;

                // Scatter length if not the first (global) length
                if (item_offset >= 1)
                {
                    d_lengths_out[item_offset - 1] = lengths_and_offsets[ITEM].value;
                }
            }
        }
    }


    /**
     * Scatter
     */
    template <bool FIRST_TILE>
    __device__ __forceinline__ void Scatter(
        OffsetT             tile_num_runs_aggregate,
        OffsetT             tile_num_runs_exclusive_in_global,
        OffsetT             warp_num_runs_aggregate,
        OffsetT             warp_num_runs_exclusive_in_tile,
        OffsetT             (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD],
        LengthOffsetPair    (&lengths_and_offsets)[ITEMS_PER_THREAD])
    {
        if ((ITEMS_PER_THREAD == 1) || (tile_num_runs_aggregate < BLOCK_THREADS))
        {
            // Direct scatter if the warp has any items
            if (warp_num_runs_aggregate)
            {
                ScatterDirect<FIRST_TILE>(
                    tile_num_runs_exclusive_in_global,
                    warp_num_runs_aggregate,
                    warp_num_runs_exclusive_in_tile,
                    thread_num_runs_exclusive_in_warp,
                    lengths_and_offsets);
            }
        }
        else
        {
            // Scatter two phase
            ScatterTwoPhase<FIRST_TILE>(
                tile_num_runs_exclusive_in_global,
                warp_num_runs_aggregate,
                warp_num_runs_exclusive_in_tile,
                thread_num_runs_exclusive_in_warp,
                lengths_and_offsets,
                Int2Type<STORE_WARP_TIME_SLICING>());
        }
    }



    //---------------------------------------------------------------------
    // Cooperatively scan a device-wide sequence of tiles with other CTAs
    //---------------------------------------------------------------------

    /**
     * Process a tile of input (dynamic chained scan)
     */
    template <
        bool                LAST_TILE>
    __device__ __forceinline__ LengthOffsetPair ConsumeTile(
        OffsetT             num_items,          ///< Total number of global input items
        OffsetT             num_remaining,      ///< Number of global input items remaining (including this tile)
        int                 tile_idx,           ///< Tile index
        OffsetT             tile_offset,        ///< Tile offset
        ScanTileStateT      &tile_status)       ///< Global list of tile status
    {
        if (tile_idx == 0)
        {
            // First tile

            // Load items
            T items[ITEMS_PER_THREAD];
            if (LAST_TILE)
                BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items, num_remaining, T());
            else
                BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items);

            if (SYNC_AFTER_LOAD)
                CTA_SYNC();

            // Set flags
            LengthOffsetPair    lengths_and_num_runs[ITEMS_PER_THREAD];

            InitializeSelections<true, LAST_TILE>(
                tile_offset,
                num_remaining,
                items,
                lengths_and_num_runs);

            // Exclusive scan of lengths and runs
            LengthOffsetPair tile_aggregate;
            LengthOffsetPair warp_aggregate;
            LengthOffsetPair warp_exclusive_in_tile;
            LengthOffsetPair thread_exclusive_in_warp;

            WarpScanAllocations(
                tile_aggregate,
                warp_aggregate,
                warp_exclusive_in_tile,
                thread_exclusive_in_warp,
                lengths_and_num_runs);

            // Update tile status if this is not the last tile
            if (!LAST_TILE && (threadIdx.x == 0))
                tile_status.SetInclusive(0, tile_aggregate);

            // Update thread_exclusive_in_warp to fold in warp run-length
            if (thread_exclusive_in_warp.key == 0)
                thread_exclusive_in_warp.value += warp_exclusive_in_tile.value;

            LengthOffsetPair    lengths_and_offsets[ITEMS_PER_THREAD];
            OffsetT             thread_num_runs_exclusive_in_warp[ITEMS_PER_THREAD];
            LengthOffsetPair    lengths_and_num_runs2[ITEMS_PER_THREAD];

            // Downsweep scan through lengths_and_num_runs
            internal::ThreadScanExclusive(lengths_and_num_runs, lengths_and_num_runs2, scan_op, thread_exclusive_in_warp);

            // Zip

            #pragma unroll
            for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
            {
                lengths_and_offsets[ITEM].value         = lengths_and_num_runs2[ITEM].value;
                lengths_and_offsets[ITEM].key        = tile_offset + (threadIdx.x * ITEMS_PER_THREAD) + ITEM;
                thread_num_runs_exclusive_in_warp[ITEM] = (lengths_and_num_runs[ITEM].key) ?
                                                                lengths_and_num_runs2[ITEM].key :         // keep
                                                                WARP_THREADS * ITEMS_PER_THREAD;            // discard
            }

            OffsetT tile_num_runs_aggregate              = tile_aggregate.key;
            OffsetT tile_num_runs_exclusive_in_global    = 0;
            OffsetT warp_num_runs_aggregate              = warp_aggregate.key;
            OffsetT warp_num_runs_exclusive_in_tile      = warp_exclusive_in_tile.key;

            // Scatter
            Scatter<true>(
                tile_num_runs_aggregate,
                tile_num_runs_exclusive_in_global,
                warp_num_runs_aggregate,
                warp_num_runs_exclusive_in_tile,
                thread_num_runs_exclusive_in_warp,
                lengths_and_offsets);

            // Return running total (inclusive of this tile)
            return tile_aggregate;
        }
        else
        {
            // Not first tile

            // Load items
            T items[ITEMS_PER_THREAD];
            if (LAST_TILE)
                BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items, num_remaining, T());
            else
                BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items);

            if (SYNC_AFTER_LOAD)
                CTA_SYNC();

            // Set flags
            LengthOffsetPair    lengths_and_num_runs[ITEMS_PER_THREAD];

            InitializeSelections<false, LAST_TILE>(
                tile_offset,
                num_remaining,
                items,
                lengths_and_num_runs);

            // Exclusive scan of lengths and runs
            LengthOffsetPair tile_aggregate;
            LengthOffsetPair warp_aggregate;
            LengthOffsetPair warp_exclusive_in_tile;
            LengthOffsetPair thread_exclusive_in_warp;

            WarpScanAllocations(
                tile_aggregate,
                warp_aggregate,
                warp_exclusive_in_tile,
                thread_exclusive_in_warp,
                lengths_and_num_runs);

            // First warp computes tile prefix in lane 0
            TilePrefixCallbackOpT prefix_op(tile_status, temp_storage.aliasable.prefix, Sum(), tile_idx);
            unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS);
            if (warp_id == 0)
            {
                prefix_op(tile_aggregate);
                if (threadIdx.x == 0)
                    temp_storage.tile_exclusive = prefix_op.exclusive_prefix;
            }

            CTA_SYNC();

            LengthOffsetPair tile_exclusive_in_global = temp_storage.tile_exclusive;

            // Update thread_exclusive_in_warp to fold in warp and tile run-lengths
            LengthOffsetPair thread_exclusive = scan_op(tile_exclusive_in_global, warp_exclusive_in_tile);
            if (thread_exclusive_in_warp.key == 0)
                thread_exclusive_in_warp.value += thread_exclusive.value;

            // Downsweep scan through lengths_and_num_runs
            LengthOffsetPair    lengths_and_num_runs2[ITEMS_PER_THREAD];
            LengthOffsetPair    lengths_and_offsets[ITEMS_PER_THREAD];
            OffsetT             thread_num_runs_exclusive_in_warp[ITEMS_PER_THREAD];

            internal::ThreadScanExclusive(lengths_and_num_runs, lengths_and_num_runs2, scan_op, thread_exclusive_in_warp);

            // Zip
            #pragma unroll
            for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
            {
                lengths_and_offsets[ITEM].value         = lengths_and_num_runs2[ITEM].value;
                lengths_and_offsets[ITEM].key        = tile_offset + (threadIdx.x * ITEMS_PER_THREAD) + ITEM;
                thread_num_runs_exclusive_in_warp[ITEM] = (lengths_and_num_runs[ITEM].key) ?
                                                                lengths_and_num_runs2[ITEM].key :         // keep
                                                                WARP_THREADS * ITEMS_PER_THREAD;            // discard
            }

            OffsetT tile_num_runs_aggregate              = tile_aggregate.key;
            OffsetT tile_num_runs_exclusive_in_global    = tile_exclusive_in_global.key;
            OffsetT warp_num_runs_aggregate              = warp_aggregate.key;
            OffsetT warp_num_runs_exclusive_in_tile      = warp_exclusive_in_tile.key;

            // Scatter
            Scatter<false>(
                tile_num_runs_aggregate,
                tile_num_runs_exclusive_in_global,
                warp_num_runs_aggregate,
                warp_num_runs_exclusive_in_tile,
                thread_num_runs_exclusive_in_warp,
                lengths_and_offsets);

            // Return running total (inclusive of this tile)
            return prefix_op.inclusive_prefix;
        }
    }


    /**
     * Scan tiles of items as part of a dynamic chained scan
     */
    template <typename NumRunsIteratorT>            ///< Output iterator type for recording number of items selected
    __device__ __forceinline__ void ConsumeRange(
        int                 num_tiles,              ///< Total number of input tiles
        ScanTileStateT&     tile_status,            ///< Global list of tile status
        NumRunsIteratorT    d_num_runs_out)         ///< Output pointer for total number of runs identified
    {
        // Blocks are launched in increasing order, so just assign one tile per block
        int     tile_idx        = (blockIdx.x * gridDim.y) + blockIdx.y;    // Current tile index
        OffsetT tile_offset     = tile_idx * TILE_ITEMS;                  // Global offset for the current tile
        OffsetT num_remaining   = num_items - tile_offset;                  // Remaining items (including this tile)

        if (tile_idx < num_tiles - 1)
        {
            // Not the last tile (full)
            ConsumeTile<false>(num_items, num_remaining, tile_idx, tile_offset, tile_status);
        }
        else if (num_remaining > 0)
        {
            // The last tile (possibly partially-full)
            LengthOffsetPair running_total = ConsumeTile<true>(num_items, num_remaining, tile_idx, tile_offset, tile_status);

            if (threadIdx.x == 0)
            {
                // Output the total number of items selected
                *d_num_runs_out = running_total.key;

                // The inclusive prefix contains accumulated length reduction for the last run
                if (running_total.key > 0)
                    d_lengths_out[running_total.key - 1] = running_total.value;
            }
        }
    }
};


}               // CUB namespace
CUB_NS_POSTFIX  // Optional outer namespace(s)