train_multilang2.sh 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
#!/bin/bash

# Copyright 2012-2014  Johns Hopkins University (Author: Daniel Povey). 
#           2013  Xiaohui Zhang
#           2013  Guoguo Chen
#           2014  Vimal Manohar
#           2014  Vijayaditya Peddinti
# Apache 2.0.


# train_multilang2.sh is for multi-language training of neural nets.  It
# takes multiple egs directories which must be created by get_egs2.sh, and the
# corresponding alignment directories (only needed for training the transition
# models).

# for the n languages, we share all the hidden layers but there are separate
# final layers.  On each iteration of training we average the hidden layers
# across all jobs of all languages, but average the parameters of the final,
# output layer only within each language.  The script starts from a partially
# trained model from the first language (language 0 in the directory-numbering
# scheme).  See egs/rm/s5/local/online/run_nnet2_wsj_joint.sh for example.
#
# This script requires you to supply a neural net partially trained for the 1st
# language, by one of the regular training scripts, to be used as the initial
# neural net (for use by other languages, we'll discard the last layer); it
# should not have been subject to "mix-up" (since this script does mix-up), or
# combination (since it would increase the parameter range to a too-large value
# which isn't compatible with our normal learning rate schedules).


# Begin configuration section.
cmd=run.pl
num_epochs=10      # Number of epochs of training (for first language);
                   # the number of iterations is worked out from this.
initial_learning_rate=0.04
final_learning_rate=0.004

minibatch_size=128 # by default use a smallish minibatch size for neural net
                   # training; this controls instability which would otherwise
                   # be a problem with multi-threaded update. 

num_jobs_nnet="2 2"    # Number of neural net jobs to run in parallel.  This option
                       # is passed to get_egs.sh.  Array must be same length
                       # as number of separate languages.
num_jobs_compute_prior=10 # these are single-threaded, run on CPU.

max_models_combine=20 # The "max_models_combine" is the maximum number of models we give
  # to the final 'combine' stage, but these models will themselves be averages of
  # iteration-number ranges.

shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
                # on each iter.  You could set it to 0 or to a large value for complete
                # randomization, but this would both consume memory and cause spikes in
                # disk I/O.  Smaller is easier on disk and memory but less random.  It's
                # not a huge deal though, as samples are anyway randomized right at the start.
                # (the point of this is to get data in different minibatches on different iterations,
                # since in the preconditioning method, 2 samples in the same minibatch can
                # affect each others' gradients.

prior_subset_size=10000 # 10k samples per job, for computing priors.  Should be
                        # more than enough.

stage=-4


mix_up="0 0" # Number of components to mix up to (should be > #tree leaves, if
             # specified.)  An array, one per language.

num_threads=16  # default suitable for CPU-based training
parallel_opts="--num-threads 16 --mem 1G"  # default suitable for CPU-based training.
  # by default we use 16 threads; this lets the queue know.
  # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
combine_num_threads=8
combine_parallel_opts="--num-threads 8"  # queue options for the "combine" stage.
cleanup=false # while testing, leaving cleanup=false.
# End configuration section.


echo "$0 $@"  # Print the command line for logging

if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;

if [ $# -lt 6 -o $[$#%2] -ne 0 ]; then
  # num-args must be at least 6 and must be even.
  echo "Usage: $0 [opts] <ali0> <egs0> <ali1> <egs1> ... <aliN-1> <egsN-1> <input-model> <exp-dir>"
  echo " e.g.: $0 data/train exp/tri6_ali exp/tri6_egs exp_lang2/tri6_ali exp_lang2/tri6_egs exp/dnn6a/10.mdl exp/tri6_multilang"
  echo ""
  echo "Note: <input-model> must correspond to the model/tree for <ali0> and <egs0>, and the"
  echo "num-epochs is computed for the zeroth language."
  echo ""
  echo "The --num-jobs-nnet should be an array saying how many jobs to allocate to each language,"
  echo "e.g. --num-jobs-nnet '2 4'"
  echo ""
  echo "Main options (for others, see top of script file)"
  echo "  --config <config-file>                           # config file containing options"
  echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
  echo "  --num-epochs <#epochs|15>                        # Number of epochs of training (figured from 1st corpus)"
  echo "  --initial-learning-rate <initial-learning-rate|0.02> # Learning rate at start of training, e.g. 0.02 for small"
  echo "                                                       # data, 0.01 for large data"
  echo "  --final-learning-rate  <final-learning-rate|0.004>   # Learning rate at end of training, e.g. 0.004 for small"
  echo "                                                   # data, 0.001 for large data"
  echo "  --num-hidden-layers <#hidden-layers|2>           # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
  echo "  --add-layers-period <#iters|2>                   # Number of iterations between adding hidden layers"
  echo "  --mix-up <#pseudo-gaussians|0>                   # Can be used to have multiple targets in final output layer,"
  echo "                                                   # per context-dependent state.  Try a number several times #states."
  echo "  --num-jobs-nnet <num-jobs|8>                     # Number of parallel jobs to use for main neural net"
  echo "                                                   # training (will affect results as well as speed; try 8, 16)"
  echo "                                                   # Note: if you increase this, you may want to also increase"
  echo "                                                   # the learning rate."
  echo "  --num-threads <num-threads|16>                   # Number of parallel threads per job (will affect results"
  echo "                                                   # as well as speed; may interact with batch size; if you increase"
  echo "                                                   # this, you may want to decrease the batch size."
  echo "  --parallel-opts <opts|\"--num-threads 16 --mem 1G\">      # extra options to pass to e.g. queue.pl for processes that"
  echo "                                                   # use multiple threads... "
  echo "  --stage <stage|-4>                               # Used to run a partially-completed training process from somewhere in"
  echo "                                                   # the middle."
  exit 1;
fi


argv=("$@") 
num_args=$#
num_lang=$[($num_args-2)/2]

dir=${argv[$num_args-1]}
input_model=${argv[$num_args-2]}

[ ! -f $input_model ] && echo "$0: Input model $input_model does not exist" && exit 1;


mkdir -p $dir/log

num_jobs_nnet_array=($num_jobs_nnet)
! [ "${#num_jobs_nnet_array[@]}" -eq "$num_lang" ] && \
  echo "$0: --num-jobs-nnet option must have size equal to the number of languages" && exit 1;
mix_up_array=($mix_up)
! [ "${#mix_up_array[@]}" -eq "$num_lang" ] && \
  echo "$0: --mix-up option must have size equal to the number of languages" && exit 1;


# Language index starts from 0.
for lang in $(seq 0 $[$num_lang-1]); do
  alidir[$lang]=${argv[$lang*2]}
  egs_dir[$lang]=${argv[$lang*2+1]}
  for f in ${egs_dir[$lang]}/info/frames_per_eg ${egs_dir[lang]}/egs.1.ark ${alidir[$lang]}/ali.1.gz ${alidir[$lang]}/tree; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  mkdir -p $dir/$lang/log
  cp ${alidir[$lang]}/tree $dir/$lang/ || exit 1;

  for f in ${egs_dir[$lang]}/{final.mat,cmvn_opts,splice_opts}; do
    # Copy any of these files that exist.
    cp $f $dir/$lang/ 2>/dev/null 
  done
done


input_model_pdfs=$(nnet-am-info $input_model | grep '^output-dim' | awk '{print $2}')
alidir0_pdfs=$(tree-info ${alidir[0]}/tree | grep '^num-pdfs' | awk '{print $2}')
if ! [ $input_model_pdfs -eq $alidir0_pdfs ]; then
  echo "$0: expected num-pdfs from the input model $input_model to match"
  echo " .. the one used for the first alignment directory ${alidir[0]}, $input_model_pdfs != $alidir0_pdfs"
  exit 1;
fi



for x in final.mat cmvn_opts splice_opts; do
  if [ -f $dir/0/$x ]; then
    for lang in $(seq 1 $[$num_lang-1]); do
      if ! cmp $dir/0/$x $dir/$lang/$x; then
        echo "$0: warning: files $dir/0/$x and $dir/$lang/$x are not identical."
      fi
    done
  fi
done

# the input model is supposed to correspond to the first language.
nnet-am-copy --learning-rate=$initial_learning_rate $input_model $dir/0/0.mdl

if nnet-am-info --print-args=false $dir/0/0.mdl | grep SumGroupComponent 2>/dev/null; then
  if [ "${mix_up_array[0]}" != "0" ]; then
    echo "$0: Your input model already has mixtures, but you are asking to mix it up."
    echo " ... best to use a model without mixtures as input.  (e.g., earlier iter)."
    exit 1;
  fi
fi


if [ $stage -le -4 ]; then
  echo "$0: initializing models for other languages"
  for lang in $(seq 1 $[$num_lang-1]); do
    # create the initial models for the other languages.
    $cmd $dir/$lang/log/reinitialize.log \
      nnet-am-reinitialize $input_model ${alidir[$lang]}/final.mdl $dir/$lang/0.mdl || exit 1;
  done
fi

if [ $stage -le -3 ]; then
  echo "Training transition probabilities and setting priors"
  for lang in $(seq 0 $[$num_lang-1]); do
    $cmd $dir/$lang/log/train_trans.log \
      nnet-train-transitions $dir/$lang/0.mdl "ark:gunzip -c ${alidir[$lang]}/ali.*.gz|" $dir/$lang/0.mdl \
      || exit 1;
  done
fi

# Work out the number of iterations... the number of epochs refers to the
# first language (language zero) and this, together with the num-jobs-nnet for
# that language and details of the egs, determine the number of epochs.

frames_per_eg0=$(cat ${egs_dir[0]}/info/frames_per_eg) || exit 1;
num_archives0=$(cat ${egs_dir[0]}/info/num_archives) || exit 1;
# num_archives_expanded considers each separate label-position from
# 0..frames_per_eg-1 to be a separate archive.
num_archives_expanded0=$[$num_archives0*$frames_per_eg0]

if [ ${num_jobs_nnet_array[0]} -gt $num_archives_expanded0 ]; then
  echo "$0: --num-jobs-nnet[0] cannot exceed num-archives*frames-per-eg which is $num_archives_expanded"
  exit 1;
fi

# set num_iters so that as close as possible, we process the data $num_epochs
# times, i.e. $num_iters*$num_jobs_nnet == $num_epochs*$num_archives_expanded
num_iters=$[($num_epochs*$num_archives_expanded0)/${num_jobs_nnet_array[0]}]

echo "$0: Will train for $num_epochs epochs (of language 0) = $num_iters iterations"

! [ $num_iters -gt 0 ] && exit 1;

# Work out the number of epochs we train for on the other languages... this is
# just informational.
for lang in $(seq 1 $[$num_lang-1]); do
  frames_per_eg=$(cat ${egs_dir[$lang]}/info/frames_per_eg) || exit 1;
  num_archives=$(cat ${egs_dir[$lang]}/info/num_archives) || exit 1;
  num_archives_expanded=$[$num_archives*$frames_per_eg]
  num_epochs=$[($num_iters*${num_jobs_nnet_array[$lang]})/$num_archives_expanded]
  echo "$0: $num_iters iterations is approximately $num_epochs epochs for language $lang"
done

# do any mixing-up after half the iters.
mix_up_iter=$[$num_iters/2]

if [ $num_threads -eq 1 ]; then
  parallel_suffix="-simple" # this enables us to use GPU code if
                         # we have just one thread.
  parallel_train_opts=
  if ! cuda-compiled; then
    echo "$0: WARNING: you are running with one thread but you have not compiled"
    echo "   for CUDA.  You may be running a setup optimized for GPUs.  If you have"
    echo "   GPUs and have nvcc installed, go to src/ and do ./configure; make"
  fi
else
  parallel_suffix="-parallel"
  parallel_train_opts="--num-threads=$num_threads"
fi


approx_iters_per_epoch=$[$num_iters/$num_epochs]
# First work out how many models we want to combine over in the final
# nnet-combine-fast invocation.  This equals
# min(max(max_models_combine, iters_per_epoch),
#     2/3 * iters_after_mixup).
# We use the same numbers of iterations for all languages, even though it's just
# worked out for the first language.
num_models_combine=$max_models_combine
if [ $num_models_combine -lt $approx_iters_per_epoch ]; then
  num_models_combine=$approx_iters_per_epoch
fi
iters_after_mixup_23=$[(($num_iters-$mix_up_iter-1)*2)/3]
if [ $num_models_combine -gt $iters_after_mixup_23 ]; then
  num_models_combine=$iters_after_mixup_23
fi
first_model_combine=$[$num_iters-$num_models_combine+1]

x=0


while [ $x -lt $num_iters ]; do
    
  if [ $x -ge 0 ] && [ $stage -le $x ]; then
    for lang in $(seq 0 $[$num_lang-1]); do
      # Set off jobs doing some diagnostics, in the background.
      $cmd $dir/$lang/log/compute_prob_valid.$x.log \
        nnet-compute-prob $dir/$lang/$x.mdl ark:${egs_dir[$lang]}/valid_diagnostic.egs &
      $cmd $dir/$lang/log/compute_prob_train.$x.log \
        nnet-compute-prob $dir/$lang/$x.mdl ark:${egs_dir[$lang]}/train_diagnostic.egs &
      if [ $x -gt 0 ] && [ ! -f $dir/$lang/log/mix_up.$[$x-1].log ]; then
        $cmd $dir/$lang/log/progress.$x.log \
          nnet-show-progress --use-gpu=no $dir/$lang/$[$x-1].mdl $dir/$lang/$x.mdl \
          ark:${egs_dir[$lang]}/train_diagnostic.egs '&&' \
           nnet-am-info $dir/$lang/$x.mdl &
      fi
    done

    echo "Training neural net (pass $x)"

    if [ $x -eq 0 ]; then
      # on iteration zero, use a smaller minibatch size and only one quarter of the
      # normal amount of training data: this will help, respectively, to ensure stability
      # and to stop the models from moving so far that averaging hurts.
      this_minibatch_size=$[$minibatch_size/2];
      this_keep_proportion=0.25
    else
      this_minibatch_size=$minibatch_size
      this_keep_proportion=1.0
      # use half the examples on iteration 1, out of a concern that the model-averaging
      # might not work if we move too far before getting close to convergence.
      [ $x -eq 1 ] && this_keep_proportion=0.5 
    fi

    rm $dir/.error 2>/dev/null


    ( # this sub-shell is so that when we "wait" below,
      # we only wait for the training jobs that we just spawned,
      # not the diagnostic jobs that we spawned above.
      
      # We can't easily use a single parallel SGE job to do the main training,
      # because the computation of which archive and which --frame option
      # to use for each job is a little complex, so we spawn each one separately.
      
      
      for lang in $(seq 0 $[$num_lang-1]); do
        this_num_jobs_nnet=${num_jobs_nnet_array[$lang]}
        this_frames_per_eg=$(cat ${egs_dir[$lang]}/info/frames_per_eg) || exit 1;
        this_num_archives=$(cat ${egs_dir[$lang]}/info/num_archives) || exit 1;

        ! [ $this_num_jobs_nnet -gt 0 -a $this_frames_per_eg -gt 0 -a $this_num_archives -gt 0 ] && exit 1

        for n in $(seq $this_num_jobs_nnet); do
          k=$[$x*$this_num_jobs_nnet + $n - 1]; # k is a zero-based index that we'll derive
                                                # the other indexes from.
          archive=$[($k%$this_num_archives)+1]; # work out the 1-based archive index.
          frame=$[(($k/$this_num_archives)%$this_frames_per_eg)];

          $cmd $parallel_opts $dir/$lang/log/train.$x.$n.log \
            nnet-train$parallel_suffix $parallel_train_opts \
            --minibatch-size=$this_minibatch_size --srand=$x $dir/$lang/$x.mdl \
            "ark,bg:nnet-copy-egs --keep-proportion=$this_keep_proportion --frame=$frame ark:${egs_dir[$lang]}/egs.$archive.ark ark:-|nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x ark:- ark:-|" \
            $dir/$lang/$[$x+1].$n.mdl || touch $dir/.error &
        done
      done
      wait
    )
    # the error message below is not that informative, but $cmd will
    # have printed a more specific one.
    [ -f $dir/.error ] && echo "$0: error on iteration $x of training" && exit 1;


    learning_rate=`perl -e '($x,$n,$i,$f)=@ARGV; print ($x >= $n ? $f : $i*exp($x*log($f/$i)/$n));' $[$x+1] $num_iters $initial_learning_rate $final_learning_rate`;

    (
      # First average within each language.  Use a sub-shell so "wait" won't
      # wait for the diagnostic jobs.
      for lang in $(seq 0 $[$num_lang-1]); do
        this_num_jobs_nnet=${num_jobs_nnet_array[$lang]}
        nnets_list=$(for n in `seq 1 $this_num_jobs_nnet`; do echo $dir/$lang/$[$x+1].$n.mdl; done)
        # average the output of the different jobs.
        $cmd $dir/$lang/log/average.$x.log \
          nnet-am-average $nnets_list - \| \
          nnet-am-copy --learning-rate=$learning_rate - $dir/$lang/$[$x+1].tmp.mdl || touch $dir/.error &
      done
      wait
      [ -f $dir/.error ] && echo "$0: error averaging models on iteration $x of training" && exit 1;
      # Remove the models we just averaged.
      for lang in $(seq 0 $[$num_lang-1]); do
        this_num_jobs_nnet=${num_jobs_nnet_array[$lang]}
        for n in `seq 1 $this_num_jobs_nnet`; do rm $dir/$lang/$[$x+1].$n.mdl; done
      done
    )


    nnets_list=$(for lang in $(seq 0 $[$num_lang-1]); do echo $dir/$lang/$[$x+1].tmp.mdl; done)
    weights_csl=$(echo $num_jobs_nnet | sed 's/ /:/g') # get as colon separated list.

    # the next command produces the cross-language averaged model containing the
    # final layer corresponding to language zero.
    $cmd $dir/log/average.$x.log \
      nnet-am-average --weights=$weights_csl --skip-last-layer=true \
      $nnets_list $dir/0/$[$x+1].mdl || exit 1;

    for lang in $(seq 1 $[$num_lang-1]); do
      # the next command takes the averaged hidden parameters from language zero, and
      # the last layer from language $lang.  It's not really doing averaging.
      $cmd $dir/$lang/log/combine_average.$x.log \
        nnet-am-average --weights=0.0:1.0 --skip-last-layer=true \
          $dir/$lang/$[$x+1].tmp.mdl $dir/0/$[$x+1].mdl $dir/$lang/$[$x+1].mdl || exit 1;
    done

    $cleanup && rm $dir/*/$[$x+1].tmp.mdl

    if [ $x -eq $mix_up_iter ]; then
      for lang in $(seq 0 $[$num_lang-1]); do     
        this_mix_up=${mix_up_array[$lang]}
        if [ $this_mix_up -gt 0 ]; then
          echo "$0: for language $lang, mixing up to $this_mix_up components"
          $cmd $dir/$lang/log/mix_up.$x.log \
            nnet-am-mixup --min-count=10 --num-mixtures=$this_mix_up \
             $dir/$lang/$[$x+1].mdl $dir/$lang/$[$x+1].mdl || exit 1;
        fi
      done
    fi

    # Now average across languages.

    rm $nnets_list

    for lang in $(seq 0 $[$num_lang-1]); do # mix up.
      [ ! -f $dir/$lang/$[$x+1].mdl ] && echo "No such file $dir/$lang/$[$x+1].mdl" && exit 1;
      if [ -f $dir/$lang/$[$x-1].mdl ] && $cleanup && \
        [ $[($x-1)%100] -ne 0  ] && [ $[$x-1] -lt $first_model_combine ]; then
        rm $dir/$lang/$[$x-1].mdl
      fi
    done
  fi
  x=$[$x+1]
done


if [ $stage -le $num_iters ]; then
  echo "$0: Doing combination to produce final models"


  rm $dir/.error 2>/dev/null
  for lang in $(seq 0 $[$num_lang-1]); do
    nnets_list=()
    # the if..else..fi statement below sets 'nnets_list'.
    if [ $max_models_combine -lt $num_models_combine ]; then
      # The number of models to combine is too large, e.g. > 20.  In this case,
      # each argument to nnet-combine-fast will be an average of multiple models.
      cur_offset=0 # current offset from first_model_combine.
      for n in $(seq $max_models_combine); do
        next_offset=$[($n*$num_models_combine)/$max_models_combine]
        sub_list="" 
        for o in $(seq $cur_offset $[$next_offset-1]); do
          iter=$[$first_model_combine+$o]
          mdl=$dir/$lang/$iter.mdl
          [ ! -f $mdl ] && echo "$0: Expected $mdl to exist" && exit 1;
          sub_list="$sub_list $mdl"
        done
        nnets_list[$[$n-1]]="nnet-am-average $sub_list - |"
        cur_offset=$next_offset
      done
    else
      nnets_list=
      for n in $(seq 0 $[num_models_combine-1]); do
        iter=$[$first_model_combine+$n]
        mdl=$dir/$lang/$iter.mdl
        [ ! -f $mdl ] && echo "$0: Expected $mdl to exist" && exit 1;
        nnets_list[$n]=$mdl
      done
    fi

    # Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
    # if there are many models it can give out-of-memory error; set num-threads
    # to 8 to speed it up (this isn't ideal...)
    num_egs=`nnet-copy-egs ark:${egs_dir[$lang]}/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`

    mb=$[($num_egs+$combine_num_threads-1)/$combine_num_threads]
    [ $mb -gt 512 ] && mb=512
    # Setting --initial-model to a large value makes it initialize the combination
    # with the average of all the models.  It's important not to start with a
    # single model, or, due to the invariance to scaling that these nonlinearities
    # give us, we get zero diagonal entries in the fisher matrix that
    # nnet-combine-fast uses for scaling, which after flooring and inversion, has
    # the effect that the initial model chosen gets much higher learning rates
    # than the others.  This prevents the optimization from working well.
    $cmd $combine_parallel_opts $dir/$lang/log/combine.log \
      nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \
        --num-threads=$combine_num_threads \
        --verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:${egs_dir[$lang]}/combine.egs \
      - \| nnet-normalize-stddev - $dir/$lang/final.mdl || touch $dir/.error &
  done
  wait
  
  [ -f $dir/.error ] && echo "$0: error doing model combination" && exit 1;
fi


if [ $stage -le $[$num_iters+1] ]; then
  for lang in $(seq 0 $[$num_lang-1]); do  
    # Run the diagnostics for the final models.
    $cmd $dir/$lang/log/compute_prob_valid.final.log \
      nnet-compute-prob $dir/$lang/final.mdl ark:${egs_dir[$lang]}/valid_diagnostic.egs &
    $cmd $dir/$lang/log/compute_prob_train.final.log \
      nnet-compute-prob $dir/$lang/final.mdl ark:${egs_dir[$lang]}/train_diagnostic.egs &
  done
  wait
fi

if [ $stage -le $[$num_iters+2] ]; then
  # Note: this just uses CPUs, using a smallish subset of data.


  for lang in $(seq 0 $[$num_lang-1]); do
    echo "$0: Getting average posterior for purposes of adjusting the priors (language $lang)."
    rm $dir/$lang/.error 2>/dev/null
    rm $dir/$lang/post.$x.*.vec 2>/dev/null
    $cmd JOB=1:$num_jobs_compute_prior $dir/$lang/log/get_post.JOB.log \
      nnet-copy-egs --frame=random --srand=JOB ark:${egs_dir[$lang]}/egs.1.ark ark:- \| \
      nnet-subset-egs --srand=JOB --n=$prior_subset_size ark:- ark:- \| \
      nnet-compute-from-egs "nnet-to-raw-nnet $dir/$lang/final.mdl -|" ark:- ark:- \| \
      matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/$lang/post.JOB.vec || touch $dir/$lang/.error &
  done
  echo "$0: ... waiting for jobs for all languages to complete."
  wait
  sleep 3;  # make sure there is time for $dir/$lang/post.$x.*.vec to appear.
  for lang in $(seq 0 $[$num_lang-1]); do
    [ -f $dir/$lang/.error ] && \
      echo "$0: error getting posteriors for adjusting the priors for language $lang" && exit 1;

    $cmd $dir/$lang/log/vector_sum.log \
      vector-sum $dir/$lang/post.*.vec $dir/$lang/post.vec || exit 1;

    rm $dir/$lang/post.*.vec;

    echo "Re-adjusting priors based on computed posteriors for language $lang"
    $cmd $dir/$lang/log/adjust_priors.final.log \
      nnet-adjust-priors $dir/$lang/final.mdl $dir/$lang/post.vec $dir/$lang/final.mdl || exit 1;
  done
fi


for lang in $(seq 0 $[$num_lang-1]); do
  if [ ! -f $dir/$lang/final.mdl ]; then
    echo "$0: $dir/final.mdl does not exist."
    # we don't want to clean up if the training didn't succeed.
    exit 1;
  fi
done

sleep 2

echo Done

if $cleanup; then
  echo Cleaning up data
  if [[ $egs_dir =~ $dir/egs* ]]; then
    steps/nnet2/remove_egs.sh $egs_dir
  fi

  echo Removing most of the models
  for x in `seq 0 $num_iters`; do
    if [ $[$x%100] -ne 0 ] && [ $x -ne $num_iters ] && [ -f $dir/$lang/$x.mdl ]; then
       # delete all but every 100th model; don't delete the ones which combine to form the final model.
      rm $dir/$lang/$x.mdl
    fi
  done
fi

exit 0