train_multilang2.sh
24 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
#!/bin/bash
# Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey).
# 2013 Xiaohui Zhang
# 2013 Guoguo Chen
# 2014 Vimal Manohar
# 2014 Vijayaditya Peddinti
# Apache 2.0.
# train_multilang2.sh is for multi-language training of neural nets. It
# takes multiple egs directories which must be created by get_egs2.sh, and the
# corresponding alignment directories (only needed for training the transition
# models).
# for the n languages, we share all the hidden layers but there are separate
# final layers. On each iteration of training we average the hidden layers
# across all jobs of all languages, but average the parameters of the final,
# output layer only within each language. The script starts from a partially
# trained model from the first language (language 0 in the directory-numbering
# scheme). See egs/rm/s5/local/online/run_nnet2_wsj_joint.sh for example.
#
# This script requires you to supply a neural net partially trained for the 1st
# language, by one of the regular training scripts, to be used as the initial
# neural net (for use by other languages, we'll discard the last layer); it
# should not have been subject to "mix-up" (since this script does mix-up), or
# combination (since it would increase the parameter range to a too-large value
# which isn't compatible with our normal learning rate schedules).
# Begin configuration section.
cmd=run.pl
num_epochs=10 # Number of epochs of training (for first language);
# the number of iterations is worked out from this.
initial_learning_rate=0.04
final_learning_rate=0.004
minibatch_size=128 # by default use a smallish minibatch size for neural net
# training; this controls instability which would otherwise
# be a problem with multi-threaded update.
num_jobs_nnet="2 2" # Number of neural net jobs to run in parallel. This option
# is passed to get_egs.sh. Array must be same length
# as number of separate languages.
num_jobs_compute_prior=10 # these are single-threaded, run on CPU.
max_models_combine=20 # The "max_models_combine" is the maximum number of models we give
# to the final 'combine' stage, but these models will themselves be averages of
# iteration-number ranges.
shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
# on each iter. You could set it to 0 or to a large value for complete
# randomization, but this would both consume memory and cause spikes in
# disk I/O. Smaller is easier on disk and memory but less random. It's
# not a huge deal though, as samples are anyway randomized right at the start.
# (the point of this is to get data in different minibatches on different iterations,
# since in the preconditioning method, 2 samples in the same minibatch can
# affect each others' gradients.
prior_subset_size=10000 # 10k samples per job, for computing priors. Should be
# more than enough.
stage=-4
mix_up="0 0" # Number of components to mix up to (should be > #tree leaves, if
# specified.) An array, one per language.
num_threads=16 # default suitable for CPU-based training
parallel_opts="--num-threads 16 --mem 1G" # default suitable for CPU-based training.
# by default we use 16 threads; this lets the queue know.
# note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
combine_num_threads=8
combine_parallel_opts="--num-threads 8" # queue options for the "combine" stage.
cleanup=false # while testing, leaving cleanup=false.
# End configuration section.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# -lt 6 -o $[$#%2] -ne 0 ]; then
# num-args must be at least 6 and must be even.
echo "Usage: $0 [opts] <ali0> <egs0> <ali1> <egs1> ... <aliN-1> <egsN-1> <input-model> <exp-dir>"
echo " e.g.: $0 data/train exp/tri6_ali exp/tri6_egs exp_lang2/tri6_ali exp_lang2/tri6_egs exp/dnn6a/10.mdl exp/tri6_multilang"
echo ""
echo "Note: <input-model> must correspond to the model/tree for <ali0> and <egs0>, and the"
echo "num-epochs is computed for the zeroth language."
echo ""
echo "The --num-jobs-nnet should be an array saying how many jobs to allocate to each language,"
echo "e.g. --num-jobs-nnet '2 4'"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-epochs <#epochs|15> # Number of epochs of training (figured from 1st corpus)"
echo " --initial-learning-rate <initial-learning-rate|0.02> # Learning rate at start of training, e.g. 0.02 for small"
echo " # data, 0.01 for large data"
echo " --final-learning-rate <final-learning-rate|0.004> # Learning rate at end of training, e.g. 0.004 for small"
echo " # data, 0.001 for large data"
echo " --num-hidden-layers <#hidden-layers|2> # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
echo " --add-layers-period <#iters|2> # Number of iterations between adding hidden layers"
echo " --mix-up <#pseudo-gaussians|0> # Can be used to have multiple targets in final output layer,"
echo " # per context-dependent state. Try a number several times #states."
echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net"
echo " # training (will affect results as well as speed; try 8, 16)"
echo " # Note: if you increase this, you may want to also increase"
echo " # the learning rate."
echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results"
echo " # as well as speed; may interact with batch size; if you increase"
echo " # this, you may want to decrease the batch size."
echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that"
echo " # use multiple threads... "
echo " --stage <stage|-4> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
exit 1;
fi
argv=("$@")
num_args=$#
num_lang=$[($num_args-2)/2]
dir=${argv[$num_args-1]}
input_model=${argv[$num_args-2]}
[ ! -f $input_model ] && echo "$0: Input model $input_model does not exist" && exit 1;
mkdir -p $dir/log
num_jobs_nnet_array=($num_jobs_nnet)
! [ "${#num_jobs_nnet_array[@]}" -eq "$num_lang" ] && \
echo "$0: --num-jobs-nnet option must have size equal to the number of languages" && exit 1;
mix_up_array=($mix_up)
! [ "${#mix_up_array[@]}" -eq "$num_lang" ] && \
echo "$0: --mix-up option must have size equal to the number of languages" && exit 1;
# Language index starts from 0.
for lang in $(seq 0 $[$num_lang-1]); do
alidir[$lang]=${argv[$lang*2]}
egs_dir[$lang]=${argv[$lang*2+1]}
for f in ${egs_dir[$lang]}/info/frames_per_eg ${egs_dir[lang]}/egs.1.ark ${alidir[$lang]}/ali.1.gz ${alidir[$lang]}/tree; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
mkdir -p $dir/$lang/log
cp ${alidir[$lang]}/tree $dir/$lang/ || exit 1;
for f in ${egs_dir[$lang]}/{final.mat,cmvn_opts,splice_opts}; do
# Copy any of these files that exist.
cp $f $dir/$lang/ 2>/dev/null
done
done
input_model_pdfs=$(nnet-am-info $input_model | grep '^output-dim' | awk '{print $2}')
alidir0_pdfs=$(tree-info ${alidir[0]}/tree | grep '^num-pdfs' | awk '{print $2}')
if ! [ $input_model_pdfs -eq $alidir0_pdfs ]; then
echo "$0: expected num-pdfs from the input model $input_model to match"
echo " .. the one used for the first alignment directory ${alidir[0]}, $input_model_pdfs != $alidir0_pdfs"
exit 1;
fi
for x in final.mat cmvn_opts splice_opts; do
if [ -f $dir/0/$x ]; then
for lang in $(seq 1 $[$num_lang-1]); do
if ! cmp $dir/0/$x $dir/$lang/$x; then
echo "$0: warning: files $dir/0/$x and $dir/$lang/$x are not identical."
fi
done
fi
done
# the input model is supposed to correspond to the first language.
nnet-am-copy --learning-rate=$initial_learning_rate $input_model $dir/0/0.mdl
if nnet-am-info --print-args=false $dir/0/0.mdl | grep SumGroupComponent 2>/dev/null; then
if [ "${mix_up_array[0]}" != "0" ]; then
echo "$0: Your input model already has mixtures, but you are asking to mix it up."
echo " ... best to use a model without mixtures as input. (e.g., earlier iter)."
exit 1;
fi
fi
if [ $stage -le -4 ]; then
echo "$0: initializing models for other languages"
for lang in $(seq 1 $[$num_lang-1]); do
# create the initial models for the other languages.
$cmd $dir/$lang/log/reinitialize.log \
nnet-am-reinitialize $input_model ${alidir[$lang]}/final.mdl $dir/$lang/0.mdl || exit 1;
done
fi
if [ $stage -le -3 ]; then
echo "Training transition probabilities and setting priors"
for lang in $(seq 0 $[$num_lang-1]); do
$cmd $dir/$lang/log/train_trans.log \
nnet-train-transitions $dir/$lang/0.mdl "ark:gunzip -c ${alidir[$lang]}/ali.*.gz|" $dir/$lang/0.mdl \
|| exit 1;
done
fi
# Work out the number of iterations... the number of epochs refers to the
# first language (language zero) and this, together with the num-jobs-nnet for
# that language and details of the egs, determine the number of epochs.
frames_per_eg0=$(cat ${egs_dir[0]}/info/frames_per_eg) || exit 1;
num_archives0=$(cat ${egs_dir[0]}/info/num_archives) || exit 1;
# num_archives_expanded considers each separate label-position from
# 0..frames_per_eg-1 to be a separate archive.
num_archives_expanded0=$[$num_archives0*$frames_per_eg0]
if [ ${num_jobs_nnet_array[0]} -gt $num_archives_expanded0 ]; then
echo "$0: --num-jobs-nnet[0] cannot exceed num-archives*frames-per-eg which is $num_archives_expanded"
exit 1;
fi
# set num_iters so that as close as possible, we process the data $num_epochs
# times, i.e. $num_iters*$num_jobs_nnet == $num_epochs*$num_archives_expanded
num_iters=$[($num_epochs*$num_archives_expanded0)/${num_jobs_nnet_array[0]}]
echo "$0: Will train for $num_epochs epochs (of language 0) = $num_iters iterations"
! [ $num_iters -gt 0 ] && exit 1;
# Work out the number of epochs we train for on the other languages... this is
# just informational.
for lang in $(seq 1 $[$num_lang-1]); do
frames_per_eg=$(cat ${egs_dir[$lang]}/info/frames_per_eg) || exit 1;
num_archives=$(cat ${egs_dir[$lang]}/info/num_archives) || exit 1;
num_archives_expanded=$[$num_archives*$frames_per_eg]
num_epochs=$[($num_iters*${num_jobs_nnet_array[$lang]})/$num_archives_expanded]
echo "$0: $num_iters iterations is approximately $num_epochs epochs for language $lang"
done
# do any mixing-up after half the iters.
mix_up_iter=$[$num_iters/2]
if [ $num_threads -eq 1 ]; then
parallel_suffix="-simple" # this enables us to use GPU code if
# we have just one thread.
parallel_train_opts=
if ! cuda-compiled; then
echo "$0: WARNING: you are running with one thread but you have not compiled"
echo " for CUDA. You may be running a setup optimized for GPUs. If you have"
echo " GPUs and have nvcc installed, go to src/ and do ./configure; make"
fi
else
parallel_suffix="-parallel"
parallel_train_opts="--num-threads=$num_threads"
fi
approx_iters_per_epoch=$[$num_iters/$num_epochs]
# First work out how many models we want to combine over in the final
# nnet-combine-fast invocation. This equals
# min(max(max_models_combine, iters_per_epoch),
# 2/3 * iters_after_mixup).
# We use the same numbers of iterations for all languages, even though it's just
# worked out for the first language.
num_models_combine=$max_models_combine
if [ $num_models_combine -lt $approx_iters_per_epoch ]; then
num_models_combine=$approx_iters_per_epoch
fi
iters_after_mixup_23=$[(($num_iters-$mix_up_iter-1)*2)/3]
if [ $num_models_combine -gt $iters_after_mixup_23 ]; then
num_models_combine=$iters_after_mixup_23
fi
first_model_combine=$[$num_iters-$num_models_combine+1]
x=0
while [ $x -lt $num_iters ]; do
if [ $x -ge 0 ] && [ $stage -le $x ]; then
for lang in $(seq 0 $[$num_lang-1]); do
# Set off jobs doing some diagnostics, in the background.
$cmd $dir/$lang/log/compute_prob_valid.$x.log \
nnet-compute-prob $dir/$lang/$x.mdl ark:${egs_dir[$lang]}/valid_diagnostic.egs &
$cmd $dir/$lang/log/compute_prob_train.$x.log \
nnet-compute-prob $dir/$lang/$x.mdl ark:${egs_dir[$lang]}/train_diagnostic.egs &
if [ $x -gt 0 ] && [ ! -f $dir/$lang/log/mix_up.$[$x-1].log ]; then
$cmd $dir/$lang/log/progress.$x.log \
nnet-show-progress --use-gpu=no $dir/$lang/$[$x-1].mdl $dir/$lang/$x.mdl \
ark:${egs_dir[$lang]}/train_diagnostic.egs '&&' \
nnet-am-info $dir/$lang/$x.mdl &
fi
done
echo "Training neural net (pass $x)"
if [ $x -eq 0 ]; then
# on iteration zero, use a smaller minibatch size and only one quarter of the
# normal amount of training data: this will help, respectively, to ensure stability
# and to stop the models from moving so far that averaging hurts.
this_minibatch_size=$[$minibatch_size/2];
this_keep_proportion=0.25
else
this_minibatch_size=$minibatch_size
this_keep_proportion=1.0
# use half the examples on iteration 1, out of a concern that the model-averaging
# might not work if we move too far before getting close to convergence.
[ $x -eq 1 ] && this_keep_proportion=0.5
fi
rm $dir/.error 2>/dev/null
( # this sub-shell is so that when we "wait" below,
# we only wait for the training jobs that we just spawned,
# not the diagnostic jobs that we spawned above.
# We can't easily use a single parallel SGE job to do the main training,
# because the computation of which archive and which --frame option
# to use for each job is a little complex, so we spawn each one separately.
for lang in $(seq 0 $[$num_lang-1]); do
this_num_jobs_nnet=${num_jobs_nnet_array[$lang]}
this_frames_per_eg=$(cat ${egs_dir[$lang]}/info/frames_per_eg) || exit 1;
this_num_archives=$(cat ${egs_dir[$lang]}/info/num_archives) || exit 1;
! [ $this_num_jobs_nnet -gt 0 -a $this_frames_per_eg -gt 0 -a $this_num_archives -gt 0 ] && exit 1
for n in $(seq $this_num_jobs_nnet); do
k=$[$x*$this_num_jobs_nnet + $n - 1]; # k is a zero-based index that we'll derive
# the other indexes from.
archive=$[($k%$this_num_archives)+1]; # work out the 1-based archive index.
frame=$[(($k/$this_num_archives)%$this_frames_per_eg)];
$cmd $parallel_opts $dir/$lang/log/train.$x.$n.log \
nnet-train$parallel_suffix $parallel_train_opts \
--minibatch-size=$this_minibatch_size --srand=$x $dir/$lang/$x.mdl \
"ark,bg:nnet-copy-egs --keep-proportion=$this_keep_proportion --frame=$frame ark:${egs_dir[$lang]}/egs.$archive.ark ark:-|nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x ark:- ark:-|" \
$dir/$lang/$[$x+1].$n.mdl || touch $dir/.error &
done
done
wait
)
# the error message below is not that informative, but $cmd will
# have printed a more specific one.
[ -f $dir/.error ] && echo "$0: error on iteration $x of training" && exit 1;
learning_rate=`perl -e '($x,$n,$i,$f)=@ARGV; print ($x >= $n ? $f : $i*exp($x*log($f/$i)/$n));' $[$x+1] $num_iters $initial_learning_rate $final_learning_rate`;
(
# First average within each language. Use a sub-shell so "wait" won't
# wait for the diagnostic jobs.
for lang in $(seq 0 $[$num_lang-1]); do
this_num_jobs_nnet=${num_jobs_nnet_array[$lang]}
nnets_list=$(for n in `seq 1 $this_num_jobs_nnet`; do echo $dir/$lang/$[$x+1].$n.mdl; done)
# average the output of the different jobs.
$cmd $dir/$lang/log/average.$x.log \
nnet-am-average $nnets_list - \| \
nnet-am-copy --learning-rate=$learning_rate - $dir/$lang/$[$x+1].tmp.mdl || touch $dir/.error &
done
wait
[ -f $dir/.error ] && echo "$0: error averaging models on iteration $x of training" && exit 1;
# Remove the models we just averaged.
for lang in $(seq 0 $[$num_lang-1]); do
this_num_jobs_nnet=${num_jobs_nnet_array[$lang]}
for n in `seq 1 $this_num_jobs_nnet`; do rm $dir/$lang/$[$x+1].$n.mdl; done
done
)
nnets_list=$(for lang in $(seq 0 $[$num_lang-1]); do echo $dir/$lang/$[$x+1].tmp.mdl; done)
weights_csl=$(echo $num_jobs_nnet | sed 's/ /:/g') # get as colon separated list.
# the next command produces the cross-language averaged model containing the
# final layer corresponding to language zero.
$cmd $dir/log/average.$x.log \
nnet-am-average --weights=$weights_csl --skip-last-layer=true \
$nnets_list $dir/0/$[$x+1].mdl || exit 1;
for lang in $(seq 1 $[$num_lang-1]); do
# the next command takes the averaged hidden parameters from language zero, and
# the last layer from language $lang. It's not really doing averaging.
$cmd $dir/$lang/log/combine_average.$x.log \
nnet-am-average --weights=0.0:1.0 --skip-last-layer=true \
$dir/$lang/$[$x+1].tmp.mdl $dir/0/$[$x+1].mdl $dir/$lang/$[$x+1].mdl || exit 1;
done
$cleanup && rm $dir/*/$[$x+1].tmp.mdl
if [ $x -eq $mix_up_iter ]; then
for lang in $(seq 0 $[$num_lang-1]); do
this_mix_up=${mix_up_array[$lang]}
if [ $this_mix_up -gt 0 ]; then
echo "$0: for language $lang, mixing up to $this_mix_up components"
$cmd $dir/$lang/log/mix_up.$x.log \
nnet-am-mixup --min-count=10 --num-mixtures=$this_mix_up \
$dir/$lang/$[$x+1].mdl $dir/$lang/$[$x+1].mdl || exit 1;
fi
done
fi
# Now average across languages.
rm $nnets_list
for lang in $(seq 0 $[$num_lang-1]); do # mix up.
[ ! -f $dir/$lang/$[$x+1].mdl ] && echo "No such file $dir/$lang/$[$x+1].mdl" && exit 1;
if [ -f $dir/$lang/$[$x-1].mdl ] && $cleanup && \
[ $[($x-1)%100] -ne 0 ] && [ $[$x-1] -lt $first_model_combine ]; then
rm $dir/$lang/$[$x-1].mdl
fi
done
fi
x=$[$x+1]
done
if [ $stage -le $num_iters ]; then
echo "$0: Doing combination to produce final models"
rm $dir/.error 2>/dev/null
for lang in $(seq 0 $[$num_lang-1]); do
nnets_list=()
# the if..else..fi statement below sets 'nnets_list'.
if [ $max_models_combine -lt $num_models_combine ]; then
# The number of models to combine is too large, e.g. > 20. In this case,
# each argument to nnet-combine-fast will be an average of multiple models.
cur_offset=0 # current offset from first_model_combine.
for n in $(seq $max_models_combine); do
next_offset=$[($n*$num_models_combine)/$max_models_combine]
sub_list=""
for o in $(seq $cur_offset $[$next_offset-1]); do
iter=$[$first_model_combine+$o]
mdl=$dir/$lang/$iter.mdl
[ ! -f $mdl ] && echo "$0: Expected $mdl to exist" && exit 1;
sub_list="$sub_list $mdl"
done
nnets_list[$[$n-1]]="nnet-am-average $sub_list - |"
cur_offset=$next_offset
done
else
nnets_list=
for n in $(seq 0 $[num_models_combine-1]); do
iter=$[$first_model_combine+$n]
mdl=$dir/$lang/$iter.mdl
[ ! -f $mdl ] && echo "$0: Expected $mdl to exist" && exit 1;
nnets_list[$n]=$mdl
done
fi
# Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
# if there are many models it can give out-of-memory error; set num-threads
# to 8 to speed it up (this isn't ideal...)
num_egs=`nnet-copy-egs ark:${egs_dir[$lang]}/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`
mb=$[($num_egs+$combine_num_threads-1)/$combine_num_threads]
[ $mb -gt 512 ] && mb=512
# Setting --initial-model to a large value makes it initialize the combination
# with the average of all the models. It's important not to start with a
# single model, or, due to the invariance to scaling that these nonlinearities
# give us, we get zero diagonal entries in the fisher matrix that
# nnet-combine-fast uses for scaling, which after flooring and inversion, has
# the effect that the initial model chosen gets much higher learning rates
# than the others. This prevents the optimization from working well.
$cmd $combine_parallel_opts $dir/$lang/log/combine.log \
nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \
--num-threads=$combine_num_threads \
--verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:${egs_dir[$lang]}/combine.egs \
- \| nnet-normalize-stddev - $dir/$lang/final.mdl || touch $dir/.error &
done
wait
[ -f $dir/.error ] && echo "$0: error doing model combination" && exit 1;
fi
if [ $stage -le $[$num_iters+1] ]; then
for lang in $(seq 0 $[$num_lang-1]); do
# Run the diagnostics for the final models.
$cmd $dir/$lang/log/compute_prob_valid.final.log \
nnet-compute-prob $dir/$lang/final.mdl ark:${egs_dir[$lang]}/valid_diagnostic.egs &
$cmd $dir/$lang/log/compute_prob_train.final.log \
nnet-compute-prob $dir/$lang/final.mdl ark:${egs_dir[$lang]}/train_diagnostic.egs &
done
wait
fi
if [ $stage -le $[$num_iters+2] ]; then
# Note: this just uses CPUs, using a smallish subset of data.
for lang in $(seq 0 $[$num_lang-1]); do
echo "$0: Getting average posterior for purposes of adjusting the priors (language $lang)."
rm $dir/$lang/.error 2>/dev/null
rm $dir/$lang/post.$x.*.vec 2>/dev/null
$cmd JOB=1:$num_jobs_compute_prior $dir/$lang/log/get_post.JOB.log \
nnet-copy-egs --frame=random --srand=JOB ark:${egs_dir[$lang]}/egs.1.ark ark:- \| \
nnet-subset-egs --srand=JOB --n=$prior_subset_size ark:- ark:- \| \
nnet-compute-from-egs "nnet-to-raw-nnet $dir/$lang/final.mdl -|" ark:- ark:- \| \
matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/$lang/post.JOB.vec || touch $dir/$lang/.error &
done
echo "$0: ... waiting for jobs for all languages to complete."
wait
sleep 3; # make sure there is time for $dir/$lang/post.$x.*.vec to appear.
for lang in $(seq 0 $[$num_lang-1]); do
[ -f $dir/$lang/.error ] && \
echo "$0: error getting posteriors for adjusting the priors for language $lang" && exit 1;
$cmd $dir/$lang/log/vector_sum.log \
vector-sum $dir/$lang/post.*.vec $dir/$lang/post.vec || exit 1;
rm $dir/$lang/post.*.vec;
echo "Re-adjusting priors based on computed posteriors for language $lang"
$cmd $dir/$lang/log/adjust_priors.final.log \
nnet-adjust-priors $dir/$lang/final.mdl $dir/$lang/post.vec $dir/$lang/final.mdl || exit 1;
done
fi
for lang in $(seq 0 $[$num_lang-1]); do
if [ ! -f $dir/$lang/final.mdl ]; then
echo "$0: $dir/final.mdl does not exist."
# we don't want to clean up if the training didn't succeed.
exit 1;
fi
done
sleep 2
echo Done
if $cleanup; then
echo Cleaning up data
if [[ $egs_dir =~ $dir/egs* ]]; then
steps/nnet2/remove_egs.sh $egs_dir
fi
echo Removing most of the models
for x in `seq 0 $num_iters`; do
if [ $[$x%100] -ne 0 ] && [ $x -ne $num_iters ] && [ -f $dir/$lang/$x.mdl ]; then
# delete all but every 100th model; don't delete the ones which combine to form the final model.
rm $dir/$lang/$x.mdl
fi
done
fi
exit 0