train_pnorm_ensemble.sh
19.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey).
# 2013 Guoguo Chen
# 2014 Xiaohui Zhang
# Apache 2.0.
# This script trains an ensemble of neural networks with pnorm nonlinearities.
# An ensemble of nets are first differently initialized, and then trained using the
# same data during each iteration. In each training iteration, one term is added to
# the objf, which is beta times the cross-entropy between the current net's posterior
# output and the geometrically averaged posterior outputs of the ensemble of nets.
# The beta values obey an exponentially increasing schedule (determined by initial_beta
# and final_beta).
# Begin configuration section.
cmd=run.pl
num_epochs=15 # Number of epochs during which we reduce
# the learning rate; number of iteration is worked out from this.
num_epochs_extra=5 # Number of epochs after we stop reducing
# the learning rate.
num_iters_final=20 # Maximum number of final iterations to give to the
# optimization over the validation set.
initial_learning_rate=0.04
final_learning_rate=0.004
bias_stddev=0.5
softmax_learning_rate_factor=1.0 # In the default setting keep the same learning rate.
combine_regularizer=1.0e-14 # Small regularizer so that parameters won't go crazy.
pnorm_input_dim=3000
pnorm_output_dim=300
p=2
minibatch_size=128 # by default use a smallish minibatch size for neural net
# training; this controls instability which would otherwise
# be a problem with multi-threaded update. Note: it also
# interacts with the "preconditioned" update which generally
# works better with larger minibatch size, so it's not
# completely cost free.
samples_per_iter=200000 # each iteration of training, see this many samples
# per job. This option is passed to get_egs.sh
num_jobs_nnet=16 # Number of neural net jobs to run in parallel. This option
# is passed to get_egs.sh.
get_egs_stage=0
shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
# on each iter. You could set it to 0 or to a large value for complete
# randomization, but this would both consume memory and cause spikes in
# disk I/O. Smaller is easier on disk and memory but less random. It's
# not a huge deal though, as samples are anyway randomized right at the start.
add_layers_period=2 # by default, add new layers every 2 iterations.
num_hidden_layers=3
stage=-5
io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time. These don't
splice_width=4 # meaning +- 4 frames on each side for second LDA
randprune=4.0 # speeds up LDA.
alpha=4.0
max_change=10.0
mix_up=0 # Number of components to mix up to (should be > #tree leaves, if
# specified.)
num_threads=16
parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know.
# note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
cleanup=true
egs_dir=
lda_opts=
egs_opts=
initial_beta=0.1
final_beta=6
ensemble_size=2
# End configuration section.
echo "$0 $@" # Print the command line for logging
if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;
if [ $# != 4 ]; then
echo "Usage: $0 [opts] <data> <lang> <ali-dir> <exp-dir>"
echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet"
echo ""
echo "Main options (for others, see top of script file)"
echo " --config <config-file> # config file containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-epochs <#epochs|15> # Number of epochs of main training"
echo " # while reducing learning rate (determines #iterations, together"
echo " # with --samples-per-iter and --num-jobs-nnet)"
echo " --num-epochs-extra <#epochs-extra|5> # Number of extra epochs of training"
echo " # after learning rate fully reduced"
echo " --initial-learning-rate <initial-learning-rate|0.02> # Learning rate at start of training, e.g. 0.02 for small"
echo " # data, 0.01 for large data"
echo " --final-learning-rate <final-learning-rate|0.004> # Learning rate at end of training, e.g. 0.004 for small"
echo " # data, 0.001 for large data"
echo " --num-hidden-layers <#hidden-layers|2> # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
echo " --initial-num-hidden-layers <#hidden-layers|1> # Number of hidden layers to start with."
echo " --add-layers-period <#iters|2> # Number of iterations between adding hidden layers"
echo " --mix-up <#pseudo-gaussians|0> # Can be used to have multiple targets in final output layer,"
echo " # per context-dependent state. Try a number several times #states."
echo " --num-jobs-nnet <num-jobs|8> # Number of parallel jobs to use for main neural net"
echo " # training (will affect results as well as speed; try 8, 16)"
echo " # Note: if you increase this, you may want to also increase"
echo " # the learning rate."
echo " --num-threads <num-threads|16> # Number of parallel threads per job (will affect results"
echo " # as well as speed; may interact with batch size; if you increase"
echo " # this, you may want to decrease the batch size."
echo " --parallel-opts <opts|\"--num-threads 16 --mem 1G\"> # extra options to pass to e.g. queue.pl for processes that"
echo " # use multiple threads... "
echo " --io-opts <opts|\"--max-jobs-run 10\"> # Options given to e.g. queue.pl for jobs that do a lot of I/O."
echo " --minibatch-size <minibatch-size|128> # Size of minibatch to process (note: product with --num-threads"
echo " # should not get too large, e.g. >2k)."
echo " --samples-per-iter <#samples|400000> # Number of samples of data to process per iteration, per"
echo " # process."
echo " --splice-width <width|4> # Number of frames on each side to append for feature input"
echo " # (note: we splice processed, typically 40-dimensional frames"
echo " --lda-dim <dim|250> # Dimension to reduce spliced features to with LDA"
echo " --num-iters-final <#iters|10> # Number of final iterations to give to nnet-combine-fast to "
echo " # interpolate parameters (the weights are learned with a validation set)"
echo " --num-utts-subset <#utts|300> # Number of utterances in subsets used for validation and diagnostics"
echo " # (the validation subset is held out from training)"
echo " --num-frames-diagnostic <#frames|4000> # Number of frames used in computing (train,valid) diagnostics"
echo " --num-valid-frames-combine <#frames|10000> # Number of frames used in getting combination weights at the"
echo " # very end."
echo " --stage <stage|-9> # Used to run a partially-completed training process from somewhere in"
echo " # the middle."
exit 1;
fi
data=$1
lang=$2
alidir=$3
dir=$4
# Check some files.
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
# Set some variables.
num_leaves=`tree-info $alidir/tree 2>/dev/null | grep num-pdfs | awk '{print $2}'` || exit 1
[ -z $num_leaves ] && echo "\$num_leaves is unset" && exit 1
[ "$num_leaves" -eq "0" ] && echo "\$num_leaves is 0" && exit 1
nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir...
# in this dir we'll have just one job.
sdata=$data/split$nj
utils/split_data.sh $data $nj
mkdir -p $dir/log
echo $nj > $dir/num_jobs
splice_opts=`cat $alidir/splice_opts 2>/dev/null`
cp $alidir/splice_opts $dir 2>/dev/null
cp $alidir/tree $dir
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
if [ $stage -le -4 ]; then
echo "$0: calling get_lda.sh"
steps/nnet2/get_lda.sh $lda_opts --splice-width $splice_width --cmd "$cmd" $data $lang $alidir $dir || exit 1;
fi
# these files will have been written by get_lda.sh
feat_dim=`cat $dir/feat_dim` || exit 1;
lda_dim=`cat $dir/lda_dim` || exit 1;
if [ $stage -le -3 ] && [ -z "$egs_dir" ]; then
echo "$0: calling get_egs.sh"
steps/nnet2/get_egs.sh --samples-per-iter $samples_per_iter --num-jobs-nnet $num_jobs_nnet \
--splice-width $splice_width --stage $get_egs_stage --cmd "$cmd" $egs_opts --io-opts "$io_opts" \
$data $lang $alidir $dir || exit 1;
fi
if [ -z $egs_dir ]; then
egs_dir=$dir/egs
fi
iters_per_epoch=`cat $egs_dir/iters_per_epoch` || exit 1;
! [ $num_jobs_nnet -eq `cat $egs_dir/num_jobs_nnet` ] && \
echo "$0: Warning: using --num-jobs-nnet=`cat $egs_dir/num_jobs_nnet` from $egs_dir"
num_jobs_nnet=`cat $egs_dir/num_jobs_nnet` || exit 1;
if ! [ $num_hidden_layers -ge 1 ]; then
echo "Invalid num-hidden-layers $num_hidden_layers"
exit 1
fi
if [ $stage -le -2 ]; then
echo "$0: initializing neural net";
lda_mat=$dir/lda.mat
ext_lda_dim=$lda_dim
ext_feat_dim=$feat_dim
stddev=`perl -e "print 1.0/sqrt($pnorm_input_dim);"`
cat >$dir/nnet.config <<EOF
SpliceComponent input-dim=$ext_feat_dim left-context=$splice_width right-context=$splice_width
FixedAffineComponent matrix=$lda_mat
AffineComponentPreconditioned input-dim=$ext_lda_dim output-dim=$pnorm_input_dim alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev
PnormComponent input-dim=$pnorm_input_dim output-dim=$pnorm_output_dim p=$p
NormalizeComponent dim=$pnorm_output_dim
AffineComponentPreconditioned input-dim=$pnorm_output_dim output-dim=$num_leaves alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=0 bias-stddev=0
SoftmaxComponent dim=$num_leaves
EOF
# to hidden.config it will write the part of the config corresponding to a
# single hidden layer; we need this to add new layers.
cat >$dir/hidden.config <<EOF
AffineComponentPreconditioned input-dim=$pnorm_output_dim output-dim=$pnorm_input_dim alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev
PnormComponent input-dim=$pnorm_input_dim output-dim=$pnorm_output_dim p=$p
NormalizeComponent dim=$pnorm_output_dim
EOF
for i in `seq 1 $ensemble_size`; do
$cmd $parallel_opts JOB=1:$ensemble_size $dir/log/nnet_init.JOB.log \
nnet-am-init $alidir/tree $lang/topo "nnet-init --srand=JOB $dir/nnet.config -|" \
$dir/0.JOB.mdl || exit 1;
done
fi
if [ $stage -le -1 ]; then
echo "Training transition probabilities and setting priors"
$cmd $parallel_opts JOB=1:$ensemble_size $dir/log/train_trans.JOB.log \
nnet-train-transitions $dir/0.JOB.mdl "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.JOB.mdl \
|| exit 1;
fi
num_iters_reduce=$[$num_epochs * $iters_per_epoch];
num_iters_extra=$[$num_epochs_extra * $iters_per_epoch];
num_iters=$[$num_iters_reduce+$num_iters_extra]
echo "$0: Will train for $num_epochs + $num_epochs_extra epochs, equalling "
echo "$0: $num_iters_reduce + $num_iters_extra = $num_iters iterations, "
echo "$0: (while reducing learning rate) + (with constant learning rate)."
# This is when we decide to mix up from: halfway between when we've finished
# adding the hidden layers and the end of training.
finish_add_layers_iter=$[$num_hidden_layers*$add_layers_period]
mix_up_iter=$[($num_iters + $finish_add_layers_iter)/2]
if [ $num_threads -eq 1 ]; then
if ! cuda-compiled; then
echo "$0: WARNING: you are running with one thread but you have not compiled"
echo " for CUDA. You may be running a setup optimized for GPUs. If you have"
echo " GPUs and have nvcc installed, go to src/ and do ./configure; make"
exit
fi
fi
x=0
while [ $x -lt $num_iters ]; do
if [ $x -ge 0 ] && [ $stage -le $x ]; then
# Set off jobs doing some diagnostics, in the background.
$cmd $dir/log/compute_prob_valid.$x.log \
nnet-compute-prob $dir/$x.1.mdl ark:$egs_dir/valid_diagnostic.egs &
$cmd $dir/log/compute_prob_train.$x.log \
nnet-compute-prob $dir/$x.1.mdl ark:$egs_dir/train_diagnostic.egs &
if [ $x -gt 0 ] && [ ! -f $dir/log/mix_up.$[$x-1].log ]; then
$cmd $dir/log/progress.$x.log \
nnet-show-progress --use-gpu=no $dir/$[$x-1].1.mdl $dir/$x.1.mdl ark:$egs_dir/train_diagnostic.egs &
fi
declare -A mdl
echo "Training neural net (pass $x)"
if [ $x -gt 0 ] && \
[ $x -le $[($num_hidden_layers-1)*$add_layers_period] ] && \
[ $[($x-1) % $add_layers_period] -eq 0 ]; then
for i in `seq 1 $ensemble_size`; do
mdl[$i]="nnet-init --srand=$[$x+$i] $dir/hidden.config - | nnet-insert $dir/$x.$i.mdl - - |"
done
else
for i in `seq 1 $ensemble_size`; do
mdl[$i]=$dir/$x.$i.mdl
done
fi
nnets_ensemble_in=
nnets_ensemble_out=
for i in `seq 1 $ensemble_size`; do
nnets_ensemble_in="$nnets_ensemble_in '${mdl[$i]}'"
nnets_ensemble_out="${nnets_ensemble_out} $dir/$[$x+1].JOB.$i.mdl "
done
beta=`perl -e '($x,$n,$i,$f)=@ARGV; print ($i+$x*($f-$i)/$n);' $[$x+1] $num_iters $initial_beta $final_beta`;
$cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \
nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \
ark:$egs_dir/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \
nnet-train-ensemble \
--minibatch-size=$minibatch_size --srand=$x --beta=$beta $nnets_ensemble_in \
ark:- $nnets_ensemble_out \
|| exit 1;
learning_rate=`perl -e '($x,$n,$i,$f)=@ARGV; print ($x >= $n ? $f : $i*exp($x*log($f/$i)/$n));' $[$x+1] $num_iters_reduce $initial_learning_rate $final_learning_rate`;
softmax_learning_rate=`perl -e "print $learning_rate * $softmax_learning_rate_factor;"`;
nnet-am-info $dir/$[$x+1].1.1.mdl > $dir/foo 2>/dev/null || exit 1
nu=`cat $dir/foo | grep num-updatable-components | awk '{print $2}'`
na=`cat $dir/foo | grep -v Fixed | grep AffineComponent | wc -l`
# na is number of last updatable AffineComponent layer [one-based, counting only
# updatable components.]
lr_string="$learning_rate"
for n in `seq 2 $nu`; do
if [ $n -eq $na ] || [ $n -eq $[$na-1] ]; then lr=$softmax_learning_rate;
else lr=$learning_rate; fi
lr_string="$lr_string:$lr"
done
for i in `seq 1 $ensemble_size`; do
nnets_list=
for n in `seq 1 $num_jobs_nnet`; do
nnets_list="$nnets_list $dir/$[$x+1].$n.$i.mdl"
done
$cmd $dir/log/average.$x.$i.log \
nnet-am-average $nnets_list - \| \
nnet-am-copy --learning-rates=$lr_string - $dir/$[$x+1].$i.mdl || exit 1;
rm $nnets_list
if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then
# mix up.
echo Mixing up from $num_leaves to $mix_up components
$cmd $dir/log/mix_up.$x.$i.log \
nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \
$dir/$[$x+1].$i.mdl $dir/$[$x+1].$i.mdl || exit 1;
fi
done
fi
x=$[$x+1]
done
# Now do combination.
# At the end, final.mdl will be a combination of the last e.g. 10 models.
for i in `seq 1 $ensemble_size`; do
nnets_list=()
if [ $num_iters_final -gt $num_iters_extra ]; then
echo "Setting num_iters_final=$num_iters_extra"
fi
start=$[$num_iters-$num_iters_final+1]
for x in `seq $start $num_iters`; do
idx=$[$x-$start]
if [ $x -gt $mix_up_iter ]; then
nnets_list[$idx]=$dir/$x.$i.mdl # "nnet-am-copy --remove-dropout=true $dir/$x.mdl - |"
fi
done
if [ $stage -le $num_iters ]; then
# Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
# if there are many models it can give out-of-memory error; set num-threads to 8
# to speed it up (this isn't ideal...)
this_num_threads=$num_threads
[ $this_num_threads -lt 8 ] && this_num_threads=8
num_egs=`nnet-copy-egs ark:$egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`
mb=$[($num_egs+$this_num_threads-1)/$this_num_threads]
[ $mb -gt 512 ] && mb=512
# Setting --initial-model to a large value makes it initialize the combination
# with the average of all the models. It's important not to start with a
# single model, or, due to the invariance to scaling that these nonlinearities
# give us, we get zero diagonal entries in the fisher matrix that
# nnet-combine-fast uses for scaling, which after flooring and inversion, has
# the effect that the initial model chosen gets much higher learning rates
# than the others. This prevents the optimization from working well.
$cmd $parallel_opts $dir/log/combine.$i.log \
nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \
--num-threads=$this_num_threads --regularizer=$combine_regularizer \
--initial-model=100000 --num-lbfgs-iters=40 \
--verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$egs_dir/combine.egs \
$dir/final.$i.mdl || exit 1;
# Normalize stddev for affine or block affine layers that are followed by a
# pnorm layer and then a normalize layer.
$cmd $parallel_opts $dir/log/normalize.$i.log \
nnet-normalize-stddev $dir/final.$i.mdl $dir/final.$i.mdl || exit 1;
fi
# Compute the probability of the final, combined model with
# the same subset we used for the previous compute_probs, as the
# different subsets will lead to different probs.
$cmd $dir/log/compute_prob_valid.final.$i.log \
nnet-compute-prob $dir/final.$i.mdl ark:$egs_dir/valid_diagnostic.egs &
$cmd $dir/log/compute_prob_train.final.$i.log \
nnet-compute-prob $dir/final.$i.mdl ark:$egs_dir/train_diagnostic.egs &
done
cp $dir/final.1.mdl $dir/final.mdl
sleep 2
echo Done
if $cleanup; then
echo Cleaning up data
if [ $egs_dir == "$dir/egs" ]; then
steps/nnet2/remove_egs.sh $dir/egs
fi
echo Removing most of the models
for x in `seq 0 $num_iters`; do
if [ $[$x%10] -ne 0 ] && [ $x -lt $[$num_iters-$num_iters_final+1] ]; then
# delete all but every 10th model; don't delete the ones which combine to form the final model.
for i in `seq 1 $ensemble_size`; do
rm $dir/$x.$i.mdl
done
fi
done
fi