train_pnorm_ensemble.sh 19.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
#!/bin/bash

# Copyright 2012  Johns Hopkins University (Author: Daniel Povey).
#           2013  Guoguo Chen
#           2014  Xiaohui Zhang
# Apache 2.0.


# This script trains an ensemble of neural networks with pnorm nonlinearities.
# An ensemble of nets are first differently initialized, and then trained using the
# same data during each iteration. In each training iteration, one term is added to
# the objf, which is beta times the cross-entropy between the current net's posterior
# output and the geometrically averaged posterior outputs of the ensemble of nets.
# The beta values obey an exponentially increasing schedule (determined by initial_beta
# and final_beta).

# Begin configuration section.
cmd=run.pl
num_epochs=15      # Number of epochs during which we reduce
                   # the learning rate; number of iteration is worked out from this.
num_epochs_extra=5 # Number of epochs after we stop reducing
                   # the learning rate.
num_iters_final=20 # Maximum number of final iterations to give to the
                   # optimization over the validation set.
initial_learning_rate=0.04
final_learning_rate=0.004
bias_stddev=0.5
softmax_learning_rate_factor=1.0 # In the default setting keep the same learning rate.

combine_regularizer=1.0e-14 # Small regularizer so that parameters won't go crazy.
pnorm_input_dim=3000
pnorm_output_dim=300
p=2
minibatch_size=128 # by default use a smallish minibatch size for neural net
                   # training; this controls instability which would otherwise
                   # be a problem with multi-threaded update.  Note: it also
                   # interacts with the "preconditioned" update which generally
                   # works better with larger minibatch size, so it's not
                   # completely cost free.

samples_per_iter=200000 # each iteration of training, see this many samples
                        # per job.  This option is passed to get_egs.sh
num_jobs_nnet=16   # Number of neural net jobs to run in parallel.  This option
                   # is passed to get_egs.sh.
get_egs_stage=0

shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
                # on each iter.  You could set it to 0 or to a large value for complete
                # randomization, but this would both consume memory and cause spikes in
                # disk I/O.  Smaller is easier on disk and memory but less random.  It's
                # not a huge deal though, as samples are anyway randomized right at the start.

add_layers_period=2 # by default, add new layers every 2 iterations.
num_hidden_layers=3
stage=-5

io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time.   These don't
splice_width=4 # meaning +- 4 frames on each side for second LDA
randprune=4.0 # speeds up LDA.
alpha=4.0
max_change=10.0
mix_up=0 # Number of components to mix up to (should be > #tree leaves, if
        # specified.)
num_threads=16
parallel_opts="--num-threads 16 --mem 1G" # by default we use 16 threads; this lets the queue know.
  # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
cleanup=true
egs_dir=
lda_opts=
egs_opts=
initial_beta=0.1
final_beta=6
ensemble_size=2
# End configuration section.


echo "$0 $@"  # Print the command line for logging

if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;

if [ $# != 4 ]; then
  echo "Usage: $0 [opts] <data> <lang> <ali-dir> <exp-dir>"
  echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet"
  echo ""
  echo "Main options (for others, see top of script file)"
  echo "  --config <config-file>                           # config file containing options"
  echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
  echo "  --num-epochs <#epochs|15>                        # Number of epochs of main training"
  echo "                                                   # while reducing learning rate (determines #iterations, together"
  echo "                                                   # with --samples-per-iter and --num-jobs-nnet)"
  echo "  --num-epochs-extra <#epochs-extra|5>             # Number of extra epochs of training"
  echo "                                                   # after learning rate fully reduced"
  echo "  --initial-learning-rate <initial-learning-rate|0.02> # Learning rate at start of training, e.g. 0.02 for small"
  echo "                                                       # data, 0.01 for large data"
  echo "  --final-learning-rate  <final-learning-rate|0.004>   # Learning rate at end of training, e.g. 0.004 for small"
  echo "                                                   # data, 0.001 for large data"
  echo "  --num-hidden-layers <#hidden-layers|2>           # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
  echo "  --initial-num-hidden-layers <#hidden-layers|1>   # Number of hidden layers to start with."
  echo "  --add-layers-period <#iters|2>                   # Number of iterations between adding hidden layers"
  echo "  --mix-up <#pseudo-gaussians|0>                   # Can be used to have multiple targets in final output layer,"
  echo "                                                   # per context-dependent state.  Try a number several times #states."
  echo "  --num-jobs-nnet <num-jobs|8>                     # Number of parallel jobs to use for main neural net"
  echo "                                                   # training (will affect results as well as speed; try 8, 16)"
  echo "                                                   # Note: if you increase this, you may want to also increase"
  echo "                                                   # the learning rate."
  echo "  --num-threads <num-threads|16>                   # Number of parallel threads per job (will affect results"
  echo "                                                   # as well as speed; may interact with batch size; if you increase"
  echo "                                                   # this, you may want to decrease the batch size."
  echo "  --parallel-opts <opts|\"--num-threads 16 --mem 1G\">      # extra options to pass to e.g. queue.pl for processes that"
  echo "                                                   # use multiple threads... "
  echo "  --io-opts <opts|\"--max-jobs-run 10\">                      # Options given to e.g. queue.pl for jobs that do a lot of I/O."
  echo "  --minibatch-size <minibatch-size|128>            # Size of minibatch to process (note: product with --num-threads"
  echo "                                                   # should not get too large, e.g. >2k)."
  echo "  --samples-per-iter <#samples|400000>             # Number of samples of data to process per iteration, per"
  echo "                                                   # process."
  echo "  --splice-width <width|4>                         # Number of frames on each side to append for feature input"
  echo "                                                   # (note: we splice processed, typically 40-dimensional frames"
  echo "  --lda-dim <dim|250>                              # Dimension to reduce spliced features to with LDA"
  echo "  --num-iters-final <#iters|10>                    # Number of final iterations to give to nnet-combine-fast to "
  echo "                                                   # interpolate parameters (the weights are learned with a validation set)"
  echo "  --num-utts-subset <#utts|300>                    # Number of utterances in subsets used for validation and diagnostics"
  echo "                                                   # (the validation subset is held out from training)"
  echo "  --num-frames-diagnostic <#frames|4000>           # Number of frames used in computing (train,valid) diagnostics"
  echo "  --num-valid-frames-combine <#frames|10000>       # Number of frames used in getting combination weights at the"
  echo "                                                   # very end."
  echo "  --stage <stage|-9>                               # Used to run a partially-completed training process from somewhere in"
  echo "                                                   # the middle."

  exit 1;
fi

data=$1
lang=$2
alidir=$3
dir=$4

# Check some files.
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do
  [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done


# Set some variables.
num_leaves=`tree-info $alidir/tree 2>/dev/null | grep num-pdfs | awk '{print $2}'` || exit 1
[ -z $num_leaves ] && echo "\$num_leaves is unset" && exit 1
[ "$num_leaves" -eq "0" ] && echo "\$num_leaves is 0" && exit 1

nj=`cat $alidir/num_jobs` || exit 1;  # number of jobs in alignment dir...
# in this dir we'll have just one job.
sdata=$data/split$nj
utils/split_data.sh $data $nj

mkdir -p $dir/log
echo $nj > $dir/num_jobs
splice_opts=`cat $alidir/splice_opts 2>/dev/null`
cp $alidir/splice_opts $dir 2>/dev/null
cp $alidir/tree $dir

utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;

if [ $stage -le -4 ]; then
  echo "$0: calling get_lda.sh"
  steps/nnet2/get_lda.sh $lda_opts --splice-width $splice_width --cmd "$cmd" $data $lang $alidir $dir || exit 1;
fi

# these files will have been written by get_lda.sh
feat_dim=`cat $dir/feat_dim` || exit 1;
lda_dim=`cat $dir/lda_dim` || exit 1;

if [ $stage -le -3 ] && [ -z "$egs_dir" ]; then
  echo "$0: calling get_egs.sh"
  steps/nnet2/get_egs.sh --samples-per-iter $samples_per_iter --num-jobs-nnet $num_jobs_nnet \
      --splice-width $splice_width --stage $get_egs_stage --cmd "$cmd" $egs_opts --io-opts "$io_opts" \
      $data $lang $alidir $dir || exit 1;
fi

if [ -z $egs_dir ]; then
  egs_dir=$dir/egs
fi

iters_per_epoch=`cat $egs_dir/iters_per_epoch`  || exit 1;
! [ $num_jobs_nnet -eq `cat $egs_dir/num_jobs_nnet` ] && \
  echo "$0: Warning: using --num-jobs-nnet=`cat $egs_dir/num_jobs_nnet` from $egs_dir"
num_jobs_nnet=`cat $egs_dir/num_jobs_nnet` || exit 1;


if ! [ $num_hidden_layers -ge 1 ]; then
  echo "Invalid num-hidden-layers $num_hidden_layers"
  exit 1
fi

if [ $stage -le -2 ]; then
  echo "$0: initializing neural net";

  lda_mat=$dir/lda.mat
  ext_lda_dim=$lda_dim
  ext_feat_dim=$feat_dim

  stddev=`perl -e "print 1.0/sqrt($pnorm_input_dim);"`
  cat >$dir/nnet.config <<EOF
SpliceComponent input-dim=$ext_feat_dim left-context=$splice_width right-context=$splice_width
FixedAffineComponent matrix=$lda_mat
AffineComponentPreconditioned input-dim=$ext_lda_dim output-dim=$pnorm_input_dim alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev
PnormComponent input-dim=$pnorm_input_dim output-dim=$pnorm_output_dim p=$p
NormalizeComponent dim=$pnorm_output_dim
AffineComponentPreconditioned input-dim=$pnorm_output_dim output-dim=$num_leaves alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=0 bias-stddev=0
SoftmaxComponent dim=$num_leaves
EOF

  # to hidden.config it will write the part of the config corresponding to a
  # single hidden layer; we need this to add new layers.
  cat >$dir/hidden.config <<EOF
AffineComponentPreconditioned input-dim=$pnorm_output_dim output-dim=$pnorm_input_dim alpha=$alpha max-change=$max_change learning-rate=$initial_learning_rate param-stddev=$stddev bias-stddev=$bias_stddev
PnormComponent input-dim=$pnorm_input_dim output-dim=$pnorm_output_dim p=$p
NormalizeComponent dim=$pnorm_output_dim
EOF
  for i in `seq 1 $ensemble_size`; do
    $cmd $parallel_opts JOB=1:$ensemble_size $dir/log/nnet_init.JOB.log \
      nnet-am-init $alidir/tree $lang/topo "nnet-init --srand=JOB $dir/nnet.config -|" \
      $dir/0.JOB.mdl || exit 1;
  done
fi

if [ $stage -le -1 ]; then
  echo "Training transition probabilities and setting priors"
  $cmd $parallel_opts JOB=1:$ensemble_size $dir/log/train_trans.JOB.log \
      nnet-train-transitions $dir/0.JOB.mdl "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.JOB.mdl \
      || exit 1;
fi

num_iters_reduce=$[$num_epochs * $iters_per_epoch];
num_iters_extra=$[$num_epochs_extra * $iters_per_epoch];
num_iters=$[$num_iters_reduce+$num_iters_extra]

echo "$0: Will train for $num_epochs + $num_epochs_extra epochs, equalling "
echo "$0: $num_iters_reduce + $num_iters_extra = $num_iters iterations, "
echo "$0: (while reducing learning rate) + (with constant learning rate)."

# This is when we decide to mix up from: halfway between when we've finished
# adding the hidden layers and the end of training.
finish_add_layers_iter=$[$num_hidden_layers*$add_layers_period]
mix_up_iter=$[($num_iters + $finish_add_layers_iter)/2]

if [ $num_threads -eq 1 ]; then
  if ! cuda-compiled; then
    echo "$0: WARNING: you are running with one thread but you have not compiled"
    echo "   for CUDA.  You may be running a setup optimized for GPUs.  If you have"
    echo "   GPUs and have nvcc installed, go to src/ and do ./configure; make"
    exit
  fi
fi

x=0

while [ $x -lt $num_iters ]; do
  if [ $x -ge 0 ] && [ $stage -le $x ]; then
    # Set off jobs doing some diagnostics, in the background.
    $cmd $dir/log/compute_prob_valid.$x.log \
      nnet-compute-prob $dir/$x.1.mdl ark:$egs_dir/valid_diagnostic.egs &
    $cmd $dir/log/compute_prob_train.$x.log \
      nnet-compute-prob $dir/$x.1.mdl ark:$egs_dir/train_diagnostic.egs &
    if [ $x -gt 0 ] && [ ! -f $dir/log/mix_up.$[$x-1].log ]; then
      $cmd $dir/log/progress.$x.log \
        nnet-show-progress --use-gpu=no $dir/$[$x-1].1.mdl $dir/$x.1.mdl ark:$egs_dir/train_diagnostic.egs &
    fi

    declare -A mdl
    echo "Training neural net (pass $x)"
    if [ $x -gt 0 ] && \
      [ $x -le $[($num_hidden_layers-1)*$add_layers_period] ] && \
      [ $[($x-1) % $add_layers_period] -eq 0 ]; then
      for i in `seq 1 $ensemble_size`; do
        mdl[$i]="nnet-init --srand=$[$x+$i] $dir/hidden.config - | nnet-insert $dir/$x.$i.mdl - - |"
      done
    else
      for i in `seq 1 $ensemble_size`; do
        mdl[$i]=$dir/$x.$i.mdl
      done
    fi

    nnets_ensemble_in=
    nnets_ensemble_out=
    for i in `seq 1 $ensemble_size`; do
      nnets_ensemble_in="$nnets_ensemble_in '${mdl[$i]}'"
      nnets_ensemble_out="${nnets_ensemble_out} $dir/$[$x+1].JOB.$i.mdl "
    done

    beta=`perl -e '($x,$n,$i,$f)=@ARGV; print ($i+$x*($f-$i)/$n);' $[$x+1] $num_iters $initial_beta $final_beta`;

    $cmd $parallel_opts JOB=1:$num_jobs_nnet $dir/log/train.$x.JOB.log \
      nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x \
      ark:$egs_dir/egs.JOB.$[$x%$iters_per_epoch].ark ark:- \| \
      nnet-train-ensemble \
         --minibatch-size=$minibatch_size --srand=$x --beta=$beta $nnets_ensemble_in \
        ark:- $nnets_ensemble_out \
      || exit 1;

    learning_rate=`perl -e '($x,$n,$i,$f)=@ARGV; print ($x >= $n ? $f : $i*exp($x*log($f/$i)/$n));' $[$x+1] $num_iters_reduce $initial_learning_rate $final_learning_rate`;
    softmax_learning_rate=`perl -e "print $learning_rate * $softmax_learning_rate_factor;"`;
    nnet-am-info $dir/$[$x+1].1.1.mdl > $dir/foo  2>/dev/null || exit 1
    nu=`cat $dir/foo | grep num-updatable-components | awk '{print $2}'`
    na=`cat $dir/foo | grep -v Fixed | grep AffineComponent | wc -l`
    # na is number of last updatable AffineComponent layer [one-based, counting only
    # updatable components.]
    lr_string="$learning_rate"
    for n in `seq 2 $nu`; do
      if [ $n -eq $na ] || [ $n -eq $[$na-1] ]; then lr=$softmax_learning_rate;
      else lr=$learning_rate; fi
      lr_string="$lr_string:$lr"
    done

    for i in `seq 1 $ensemble_size`; do
      nnets_list=
      for n in `seq 1 $num_jobs_nnet`; do
        nnets_list="$nnets_list $dir/$[$x+1].$n.$i.mdl"
      done
      $cmd $dir/log/average.$x.$i.log \
        nnet-am-average $nnets_list - \| \
        nnet-am-copy --learning-rates=$lr_string - $dir/$[$x+1].$i.mdl || exit 1;
      rm $nnets_list
      if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then
        # mix up.
        echo Mixing up from $num_leaves to $mix_up components
        $cmd $dir/log/mix_up.$x.$i.log \
          nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \
          $dir/$[$x+1].$i.mdl $dir/$[$x+1].$i.mdl || exit 1;
      fi
    done
  fi
  x=$[$x+1]
done

# Now do combination.
# At the end, final.mdl will be a combination of the last e.g. 10 models.

for i in `seq 1 $ensemble_size`; do
  nnets_list=()
  if [ $num_iters_final -gt $num_iters_extra ]; then
    echo "Setting num_iters_final=$num_iters_extra"
  fi
  start=$[$num_iters-$num_iters_final+1]
  for x in `seq $start $num_iters`; do
    idx=$[$x-$start]
    if [ $x -gt $mix_up_iter ]; then
      nnets_list[$idx]=$dir/$x.$i.mdl # "nnet-am-copy --remove-dropout=true $dir/$x.mdl - |"
    fi
  done

  if [ $stage -le $num_iters ]; then
    # Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
    # if there are many models it can give out-of-memory error; set num-threads to 8
    # to speed it up (this isn't ideal...)
    this_num_threads=$num_threads
    [ $this_num_threads -lt 8 ] && this_num_threads=8
    num_egs=`nnet-copy-egs ark:$egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`
    mb=$[($num_egs+$this_num_threads-1)/$this_num_threads]
    [ $mb -gt 512 ] && mb=512
    # Setting --initial-model to a large value makes it initialize the combination
    # with the average of all the models.  It's important not to start with a
    # single model, or, due to the invariance to scaling that these nonlinearities
    # give us, we get zero diagonal entries in the fisher matrix that
    # nnet-combine-fast uses for scaling, which after flooring and inversion, has
    # the effect that the initial model chosen gets much higher learning rates
    # than the others.  This prevents the optimization from working well.
    $cmd $parallel_opts $dir/log/combine.$i.log \
      nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \
        --num-threads=$this_num_threads --regularizer=$combine_regularizer \
        --initial-model=100000 --num-lbfgs-iters=40 \
        --verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$egs_dir/combine.egs \
        $dir/final.$i.mdl || exit 1;

    # Normalize stddev for affine or block affine layers that are followed by a
    # pnorm layer and then a normalize layer.
    $cmd $parallel_opts $dir/log/normalize.$i.log \
      nnet-normalize-stddev $dir/final.$i.mdl $dir/final.$i.mdl || exit 1;
  fi
  # Compute the probability of the final, combined model with
  # the same subset we used for the previous compute_probs, as the
  # different subsets will lead to different probs.
  $cmd $dir/log/compute_prob_valid.final.$i.log \
    nnet-compute-prob $dir/final.$i.mdl ark:$egs_dir/valid_diagnostic.egs &
  $cmd $dir/log/compute_prob_train.final.$i.log \
    nnet-compute-prob $dir/final.$i.mdl ark:$egs_dir/train_diagnostic.egs &
done
cp $dir/final.1.mdl $dir/final.mdl

sleep 2

echo Done

if $cleanup; then
  echo Cleaning up data
  if [ $egs_dir == "$dir/egs" ]; then
    steps/nnet2/remove_egs.sh $dir/egs
  fi
  echo Removing most of the models
  for x in `seq 0 $num_iters`; do
    if [ $[$x%10] -ne 0 ] && [ $x -lt $[$num_iters-$num_iters_final+1] ]; then
       # delete all but every 10th model; don't delete the ones which combine to form the final model.
      for i in `seq 1 $ensemble_size`; do
        rm $dir/$x.$i.mdl
      done
    fi
  done
fi