context-fst-test.cc
9.34 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// fstext/context-fst-test.cc
// Copyright 2009-2011 Microsoft Corporation
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "fstext/context-fst.h"
#include "fstext/fst-test-utils.h"
#include "tree/context-dep.h"
#include "util/kaldi-io.h"
#include "base/kaldi-math.h"
namespace fst
{
// GenAcceptorFromSequence generates a linear acceptor (identical input+output symbols) that has this
// sequence of symbols, and
template<class Arc>
static VectorFst<Arc> *GenAcceptorFromSequence(const vector<typename Arc::Label> &symbols, float cost) {
typedef typename Arc::Weight Weight;
typedef typename Arc::StateId StateId;
vector<float> split_cost(symbols.size()+1, 0.0); // for #-arcs + end-state.
{ // compute split_cost. it must sum to "cost".
std::set<int32> indices;
size_t num_indices = 1 + (kaldi::Rand() % split_cost.size());
while (indices.size() < num_indices) indices.insert(kaldi::Rand() % split_cost.size());
for (std::set<int32>::iterator iter = indices.begin(); iter != indices.end(); ++iter) {
split_cost[*iter] = cost / num_indices;
}
}
VectorFst<Arc> *fst = new VectorFst<Arc>();
StateId cur_state = fst->AddState();
fst->SetStart(cur_state);
for (size_t i = 0; i < symbols.size(); i++) {
StateId next_state = fst->AddState();
Arc arc;
arc.ilabel = symbols[i];
arc.olabel = symbols[i];
arc.nextstate = next_state;
arc.weight = (Weight) split_cost[i];
fst->AddArc(cur_state, arc);
cur_state = next_state;
}
fst->SetFinal(cur_state, (Weight)split_cost[symbols.size()]);
return fst;
}
// CheckPhones is used to test the correctness of an FST that is the result of
// composition with a ContextFst.
template<class Arc>
static float CheckPhones(const VectorFst<Arc> &linear_fst,
const vector<typename Arc::Label> &phone_ids,
const vector<typename Arc::Label> &disambig_ids,
const vector<typename Arc::Label> &phone_seq,
const vector<vector<typename Arc::Label> > &ilabel_info,
int N, int P) {
typedef typename Arc::Label Label;
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
assert(kaldi::IsSorted(phone_ids)); // so we can do binary_search.
vector<int32> input_syms;
vector<int32> output_syms;
Weight tot_cost;
bool ans = GetLinearSymbolSequence(linear_fst, &input_syms,
&output_syms, &tot_cost);
assert(ans); // should be linear.
vector<int32> phone_seq_check;
for (size_t i = 0; i < output_syms.size(); i++)
if (std::binary_search(phone_ids.begin(), phone_ids.end(), output_syms[i]))
phone_seq_check.push_back(output_syms[i]);
assert(phone_seq_check == phone_seq);
vector<vector<int32> > input_syms_long;
for (size_t i = 0; i < input_syms.size(); i++) {
Label isym = input_syms[i];
if (ilabel_info[isym].size() == 0) continue; // epsilon.
if ( (ilabel_info[isym].size() == 1 &&
ilabel_info[isym][0] <= 0) ) continue; // disambig.
input_syms_long.push_back(ilabel_info[isym]);
}
for (size_t i = 0; i < input_syms_long.size(); i++) {
vector<int32> phone_context_window(N); // phone at pos i will be at pos P in this window.
int pos = ((int)i) - P; // pos of first phone in window [ may be out of range] .
for (int j = 0; j < N; j++, pos++) {
if (static_cast<size_t>(pos) < phone_seq.size()) phone_context_window[j] = phone_seq[pos];
else phone_context_window[j] = 0; // 0 is a special symbol that context-dep-itf expects to see
// when no phone is present due to out-of-window. context-fst knows about this too.
}
assert(input_syms_long[i] == phone_context_window);
}
return tot_cost.Value();
}
template<class Arc>
static VectorFst<Arc> *GenRandPhoneSeq(vector<typename Arc::Label> &phone_syms,
vector<typename Arc::Label> &disambig_syms,
typename Arc::Label subsequential_symbol,
int num_subseq_syms,
float seq_prob,
vector<typename Arc::Label> *phoneseq_out) {
KALDI_ASSERT(phoneseq_out != NULL);
typedef typename Arc::Label Label;
// Generate an FST that is a random phone sequence, ending
// with "num_subseq_syms" subsequential symbols. It will
// have disambiguation symbols randomly interspersed throughout.
// The number of phones is random (possibly zero).
size_t len = (kaldi::Rand() % 4) * (kaldi::Rand() % 3); // up to 3*2=6 phones.
float disambig_prob = 0.33;
phoneseq_out->clear();
vector<Label> syms; // the phones
for (size_t i = 0; i < len; i++) {
while (kaldi::RandUniform() < disambig_prob) syms.push_back(disambig_syms[kaldi::Rand() % disambig_syms.size()]);
Label phone_id = phone_syms[kaldi::Rand() % phone_syms.size()];
phoneseq_out->push_back(phone_id); // record in output the underlying phone sequence.
syms.push_back(phone_id);
}
for (size_t i = 0; static_cast<int32>(i) < num_subseq_syms; i++) {
while (kaldi::RandUniform() < disambig_prob) syms.push_back(disambig_syms[kaldi::Rand() % disambig_syms.size()]);
syms.push_back(subsequential_symbol);
}
while (kaldi::RandUniform() < disambig_prob) syms.push_back(disambig_syms[kaldi::Rand() % disambig_syms.size()]);
// OK, now have the symbols of the FST as a vector.
return GenAcceptorFromSequence<Arc>(syms, seq_prob);
}
// Don't instantiate with log semiring, as RandEquivalent may fail.
// TestContestFst also test ReadILabelInfo and WriteILabelInfo.
static void TestContextFst(bool verbose, bool use_matcher) {
typedef StdArc Arc;
typedef Arc::Label Label;
typedef Arc::StateId StateId;
typedef Arc::Weight Weight;
// Generate a random set of phones.
size_t num_phones = 1 + kaldi::Rand() % 10;
std::set<int32> phones_set;
while (phones_set.size() < num_phones) phones_set.insert(1 + kaldi::Rand() % (num_phones + 5)); // don't use 0 [== epsilon]
vector<int32> phones;
kaldi::CopySetToVector(phones_set, &phones);
int N = 1 + kaldi::Rand() % 4; // Context size, in range 1..4.
int P = kaldi::Rand() % N; // 1.. N-1.
if (verbose) std::cout << "N = "<< N << ", P = "<<P<<'\n';
Label subsequential_symbol = 1000;
vector<int32> disambig_syms;
for (size_t i =0; i < 5; i++) disambig_syms.push_back(500 + i);
vector<int32> phone_syms;
for (size_t i = 0; i < phones.size();i++) phone_syms.push_back(phones[i]);
InverseContextFst inv_cfst(subsequential_symbol,
phones, disambig_syms,
N, P);
/* Now create random phone-sequences and compose them with the context FST.
*/
for (size_t p = 0; p < 10; p++) {
vector<int32> phone_seq;
int num_subseq = N - P - 1; // zero if P == N-1, i.e. P is last element, i.e. left-context only.
float tot_cost = 20.0 * kaldi::RandUniform();
VectorFst<Arc> *f = GenRandPhoneSeq<Arc>(phone_syms, disambig_syms, subsequential_symbol, num_subseq, tot_cost, &phone_seq);
if (verbose) {
std::cout << "Sequence FST is:\n";
{ // Try to print the fst.
FstPrinter<Arc> fstprinter(*f, NULL, NULL, NULL, false, true, "\t");
fstprinter.Print(&std::cout, "standard output");
}
}
VectorFst<Arc> fst_composed;
ComposeDeterministicOnDemandInverse(*f, &inv_cfst, &fst_composed);
// Testing WriteILabelInfo and ReadILabelInfo.
{
bool binary = (kaldi::Rand() % 2 == 0);
WriteILabelInfo(kaldi::Output("tmpf", binary).Stream(),
binary, inv_cfst.IlabelInfo());
bool binary_in;
vector<vector<int32> > ilabel_info;
kaldi::Input ki("tmpf", &binary_in);
ReadILabelInfo(ki.Stream(),
binary_in, &ilabel_info);
assert(ilabel_info == inv_cfst.IlabelInfo());
}
if (verbose) {
std::cout << "Composed FST is:\n";
{ // Try to print the fst.
FstPrinter<Arc> fstprinter(fst_composed, NULL, NULL, NULL, false, true, "\t");
fstprinter.Print(&std::cout, "standard output");
}
}
// now check the composed FST.
float tot_cost_check = CheckPhones<Arc>(fst_composed,
phone_syms,
disambig_syms,
phone_seq,
inv_cfst.IlabelInfo(),
N, P);
kaldi::AssertEqual(tot_cost, tot_cost_check);
delete f;
}
unlink("tmpf");
}
} // namespace fst
int main() {
for (int i = 0;i < 16;i++) {
bool verbose = (i < 4);
bool use_matcher = ( (i/4) % 2 == 0);
fst::TestContextFst(verbose, use_matcher);
}
}