synchronize.h 13.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Synchronize an FST with bounded delay.

#ifndef FST_SYNCHRONIZE_H_
#define FST_SYNCHRONIZE_H_

#include <algorithm>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include <fst/cache.h>
#include <fst/test-properties.h>


namespace fst {

using SynchronizeFstOptions = CacheOptions;

namespace internal {

// Implementation class for SynchronizeFst.
// TODO(kbg,sorenj): Refactor to guarantee thread-safety.

template <class Arc>
class SynchronizeFstImpl : public CacheImpl<Arc> {
 public:
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using FstImpl<Arc>::SetType;
  using FstImpl<Arc>::SetProperties;
  using FstImpl<Arc>::SetInputSymbols;
  using FstImpl<Arc>::SetOutputSymbols;

  using CacheBaseImpl<CacheState<Arc>>::PushArc;
  using CacheBaseImpl<CacheState<Arc>>::HasArcs;
  using CacheBaseImpl<CacheState<Arc>>::HasFinal;
  using CacheBaseImpl<CacheState<Arc>>::HasStart;
  using CacheBaseImpl<CacheState<Arc>>::SetArcs;
  using CacheBaseImpl<CacheState<Arc>>::SetFinal;
  using CacheBaseImpl<CacheState<Arc>>::SetStart;

  using String = basic_string<Label>;

  struct Element {
    Element() {}

    Element(StateId state_, const String *i, const String *o)
        : state(state_), istring(i), ostring(o) {}

    StateId state;          // Input state ID.
    const String *istring;  // Residual input labels.
    const String *ostring;  // Residual output labels.
    // Residual strings are represented by const pointers to
    // basic_string<Label> and are stored in a hash_set. The pointed
    // memory is owned by the hash_set string_set_.
  };

  SynchronizeFstImpl(const Fst<Arc> &fst, const SynchronizeFstOptions &opts)
      : CacheImpl<Arc>(opts), fst_(fst.Copy()) {
    SetType("synchronize");
    const auto props = fst.Properties(kFstProperties, false);
    SetProperties(SynchronizeProperties(props), kCopyProperties);
    SetInputSymbols(fst.InputSymbols());
    SetOutputSymbols(fst.OutputSymbols());
  }

  SynchronizeFstImpl(const SynchronizeFstImpl &impl)
      : CacheImpl<Arc>(impl), fst_(impl.fst_->Copy(true)) {
    SetType("synchronize");
    SetProperties(impl.Properties(), kCopyProperties);
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
  }

  ~SynchronizeFstImpl() override {
    for (const auto *ptr : string_set_) delete ptr;
  }

  StateId Start() {
    if (!HasStart()) {
      auto start = fst_->Start();
      if (start == kNoStateId) return kNoStateId;
      const auto *empty = FindString(new String());
      start = FindState(Element(fst_->Start(), empty, empty));
      SetStart(start);
    }
    return CacheImpl<Arc>::Start();
  }

  Weight Final(StateId s) {
    if (!HasFinal(s)) {
      const auto &element = elements_[s];
      const auto weight = element.state == kNoStateId
                              ? Weight::One()
                              : fst_->Final(element.state);
      if ((weight != Weight::Zero()) && (element.istring)->empty() &&
          (element.ostring)->empty()) {
        SetFinal(s, weight);
      } else {
        SetFinal(s, Weight::Zero());
      }
    }
    return CacheImpl<Arc>::Final(s);
  }

  size_t NumArcs(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<Arc>::NumArcs(s);
  }

  size_t NumInputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<Arc>::NumInputEpsilons(s);
  }

  size_t NumOutputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<Arc>::NumOutputEpsilons(s);
  }

  uint64 Properties() const override { return Properties(kFstProperties); }

  // Sets error if found, returning other FST impl properties.
  uint64 Properties(uint64 mask) const override {
    if ((mask & kError) && fst_->Properties(kError, false)) {
      SetProperties(kError, kError);
    }
    return FstImpl<Arc>::Properties(mask);
  }

  void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) {
    if (!HasArcs(s)) Expand(s);
    CacheImpl<Arc>::InitArcIterator(s, data);
  }

  // Returns the first character of the string obtained by concatenating the
  // string and the label.
  Label Car(const String *str, Label label = 0) const {
    if (!str->empty()) {
      return (*str)[0];
    } else {
      return label;
    }
  }

  // Computes the residual string obtained by removing the first
  // character in the concatenation of the string and the label.
  const String *Cdr(const String *str, Label label = 0) {
    auto *r = new String();
    for (size_t i = 1; i < str->size(); ++i) r->push_back((*str)[i]);
    if (label && !(str->empty())) r->push_back(label);
    return FindString(r);
  }

  // Computes the concatenation of the string and the label.
  const String *Concat(const String *str, Label label = 0) {
    auto *r = new String();
    for (size_t i = 0; i < str->size(); ++i) r->push_back((*str)[i]);
    if (label) r->push_back(label);
    return FindString(r);
  }

  // Tests if the concatenation of the string and label is empty.
  bool Empty(const String *str, Label label = 0) const {
    if (str->empty()) {
      return label == 0;
    } else {
      return false;
    }
  }

  // Finds the string pointed by s in the hash set. Transfers the pointer
  // ownership to the hash set.
  const String *FindString(const String *str) {
    const auto insert_result = string_set_.insert(str);
    if (!insert_result.second) {
      delete str;
    }
    return *insert_result.first;
  }

  // Finds state corresponding to an element. Creates new state if element
  // is not found.
  StateId FindState(const Element &element) {
    const auto insert_result =
        element_map_.insert(std::make_pair(element, elements_.size()));
    if (insert_result.second) {
      elements_.push_back(element);
    }
    return insert_result.first->second;
  }

  // Computes the outgoing transitions from a state, creating new destination
  // states as needed.
  void Expand(StateId s) {
    const auto element = elements_[s];
    if (element.state != kNoStateId) {
      for (ArcIterator<Fst<Arc>> aiter(*fst_, element.state); !aiter.Done();
           aiter.Next()) {
        const auto &arc = aiter.Value();
        if (!Empty(element.istring, arc.ilabel) &&
            !Empty(element.ostring, arc.olabel)) {
          const auto *istring = Cdr(element.istring, arc.ilabel);
          const auto *ostring = Cdr(element.ostring, arc.olabel);
          PushArc(s, Arc(Car(element.istring, arc.ilabel),
                         Car(element.ostring, arc.olabel), arc.weight,
                         FindState(Element(arc.nextstate, istring, ostring))));
        } else {
          const auto *istring = Concat(element.istring, arc.ilabel);
          const auto *ostring = Concat(element.ostring, arc.olabel);
          PushArc(s, Arc(0, 0, arc.weight,
                         FindState(Element(arc.nextstate, istring, ostring))));
        }
      }
    }
    const auto weight = element.state == kNoStateId
                            ? Weight::One()
                            : fst_->Final(element.state);
    if ((weight != Weight::Zero()) &&
        ((element.istring)->size() + (element.ostring)->size() > 0)) {
      const auto *istring = Cdr(element.istring);
      const auto *ostring = Cdr(element.ostring);
      PushArc(s, Arc(Car(element.istring), Car(element.ostring), weight,
                     FindState(Element(kNoStateId, istring, ostring))));
    }
    SetArcs(s);
  }

 private:
  // Equality function for Elements; assumes strings have been hashed.
  class ElementEqual {
   public:
    bool operator()(const Element &x, const Element &y) const {
      return x.state == y.state && x.istring == y.istring &&
             x.ostring == y.ostring;
    }
  };

  // Hash function for Elements to FST states.
  class ElementKey {
   public:
    size_t operator()(const Element &x) const {
      size_t key = x.state;
      key = (key << 1) ^ (x.istring)->size();
      for (size_t i = 0; i < (x.istring)->size(); ++i) {
        key = (key << 1) ^ (*x.istring)[i];
      }
      key = (key << 1) ^ (x.ostring)->size();
      for (size_t i = 0; i < (x.ostring)->size(); ++i) {
        key = (key << 1) ^ (*x.ostring)[i];
      }
      return key;
    }
  };

  // Equality function for strings.
  class StringEqual {
   public:
    bool operator()(const String *const &x, const String *const &y) const {
      if (x->size() != y->size()) return false;
      for (size_t i = 0; i < x->size(); ++i) {
        if ((*x)[i] != (*y)[i]) return false;
      }
      return true;
    }
  };

  // Hash function for set of strings
  class StringKey {
   public:
    size_t operator()(const String *const &x) const {
      size_t key = x->size();
      for (size_t i = 0; i < x->size(); ++i) key = (key << 1) ^ (*x)[i];
      return key;
    }
  };

  using ElementMap =
      std::unordered_map<Element, StateId, ElementKey, ElementEqual>;
  using StringSet = std::unordered_set<const String *, StringKey, StringEqual>;

  std::unique_ptr<const Fst<Arc>> fst_;
  std::vector<Element> elements_;  // Maps FST state to Elements.
  ElementMap element_map_;         // Maps Elements to FST state.
  StringSet string_set_;
};

}  // namespace internal

// Synchronizes a transducer. This version is a delayed FST. The result is an
// equivalent FST that has the property that during the traversal of a path,
// the delay is either zero or strictly increasing, where the delay is the
// difference between the number of non-epsilon output labels and input labels
// along the path.
//
// For the algorithm to terminate, the input transducer must have bounded
// delay, i.e., the delay of every cycle must be zero.
//
// Complexity:
//
// - A has bounded delay: exponential.
// - A does not have bounded delay: does not terminate.
//
// For more information, see:
//
// Mohri, M. 2003. Edit-distance of weighted automata: General definitions and
// algorithms. International Journal of Computer Science 14(6): 957-982.
//
// This class attaches interface to implementation and handles reference
// counting, delegating most methods to ImplToFst.
template <class A>
class SynchronizeFst : public ImplToFst<internal::SynchronizeFstImpl<A>> {
 public:
  using Arc = A;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using Store = DefaultCacheStore<Arc>;
  using State = typename Store::State;
  using Impl = internal::SynchronizeFstImpl<A>;

  friend class ArcIterator<SynchronizeFst<A>>;
  friend class StateIterator<SynchronizeFst<A>>;

  explicit SynchronizeFst(
      const Fst<A> &fst,
      const SynchronizeFstOptions &opts = SynchronizeFstOptions())
      : ImplToFst<Impl>(std::make_shared<Impl>(fst, opts)) {}

  // See Fst<>::Copy() for doc.
  SynchronizeFst(const SynchronizeFst<Arc> &fst, bool safe = false)
      : ImplToFst<Impl>(fst, safe) {}

  // Gets a copy of this SynchronizeFst. See Fst<>::Copy() for further doc.
  SynchronizeFst<Arc> *Copy(bool safe = false) const override {
    return new SynchronizeFst<Arc>(*this, safe);
  }

  inline void InitStateIterator(StateIteratorData<Arc> *data) const override;

  void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const override {
    GetMutableImpl()->InitArcIterator(s, data);
  }

 private:
  using ImplToFst<Impl>::GetImpl;
  using ImplToFst<Impl>::GetMutableImpl;

  SynchronizeFst &operator=(const SynchronizeFst &) = delete;
};

// Specialization for SynchronizeFst.
template <class Arc>
class StateIterator<SynchronizeFst<Arc>>
    : public CacheStateIterator<SynchronizeFst<Arc>> {
 public:
  explicit StateIterator(const SynchronizeFst<Arc> &fst)
      : CacheStateIterator<SynchronizeFst<Arc>>(fst, fst.GetMutableImpl()) {}
};

// Specialization for SynchronizeFst.
template <class Arc>
class ArcIterator<SynchronizeFst<Arc>>
    : public CacheArcIterator<SynchronizeFst<Arc>> {
 public:
  using StateId = typename Arc::StateId;

  ArcIterator(const SynchronizeFst<Arc> &fst, StateId s)
      : CacheArcIterator<SynchronizeFst<Arc>>(fst.GetMutableImpl(), s) {
    if (!fst.GetImpl()->HasArcs(s)) fst.GetMutableImpl()->Expand(s);
  }
};

template <class Arc>
inline void SynchronizeFst<Arc>::InitStateIterator(
    StateIteratorData<Arc> *data) const {
  data->base = new StateIterator<SynchronizeFst<Arc>>(*this);
}

// Synchronizes a transducer. This version writes the synchronized result to a
// MutableFst. The result will be an equivalent FST that has the property that
// during the traversal of a path, the delay is either zero or strictly
// increasing, where the delay is the difference between the number of
// non-epsilon output labels and input labels along the path.
//
// For the algorithm to terminate, the input transducer must have bounded
// delay, i.e., the delay of every cycle must be zero.
//
// Complexity:
//
// - A has bounded delay: exponential.
// - A does not have bounded delay: does not terminate.
//
// For more information, see:
//
// Mohri, M. 2003. Edit-distance of weighted automata: General definitions and
// algorithms. International Journal of Computer Science 14(6): 957-982.
template <class Arc>
void Synchronize(const Fst<Arc> &ifst, MutableFst<Arc> *ofst) {
  // Caches only the last state for fastest copy.
  const SynchronizeFstOptions opts(FLAGS_fst_default_cache_gc, 0);
  *ofst = SynchronizeFst<Arc>(ifst, opts);
}

}  // namespace fst

#endif  // FST_SYNCHRONIZE_H_