float-weight.h 24.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Float weight set and associated semiring operation definitions.

#ifndef FST_FLOAT_WEIGHT_H_
#define FST_FLOAT_WEIGHT_H_

#include <climits>
#include <cmath>
#include <cstdlib>
#include <cstring>

#include <algorithm>
#include <limits>
#include <sstream>
#include <string>

#include <fst/util.h>
#include <fst/weight.h>


namespace fst {

// Numeric limits class.
template <class T>
class FloatLimits {
 public:
  static constexpr T PosInfinity() {
    return std::numeric_limits<T>::infinity();
  }

  static constexpr T NegInfinity() { return -PosInfinity(); }

  static constexpr T NumberBad() { return std::numeric_limits<T>::quiet_NaN(); }
};

// Weight class to be templated on floating-points types.
template <class T = float>
class FloatWeightTpl {
 public:
  using ValueType = T;

  FloatWeightTpl() {}

  FloatWeightTpl(T f) : value_(f) {}

  FloatWeightTpl(const FloatWeightTpl<T> &weight) : value_(weight.value_) {}

  FloatWeightTpl<T> &operator=(const FloatWeightTpl<T> &weight) {
    value_ = weight.value_;
    return *this;
  }

  std::istream &Read(std::istream &strm) { return ReadType(strm, &value_); }

  std::ostream &Write(std::ostream &strm) const {
    return WriteType(strm, value_);
  }

  size_t Hash() const {
    size_t hash = 0;
    // Avoid using union, which would be undefined behavior.
    // Use memcpy, similar to bit_cast, but sizes may be different.
    // This should be optimized into a single move instruction by
    // any reasonable compiler.
    std::memcpy(&hash, &value_, std::min(sizeof(hash), sizeof(value_)));
    return hash;
  }

  const T &Value() const { return value_; }

 protected:
  void SetValue(const T &f) { value_ = f; }

  static constexpr const char *GetPrecisionString() {
    return sizeof(T) == 4
               ? ""
               : sizeof(T) == 1
                     ? "8"
                     : sizeof(T) == 2 ? "16"
                                      : sizeof(T) == 8 ? "64" : "unknown";
  }

 private:
  T value_;
};

// Single-precision float weight.
using FloatWeight = FloatWeightTpl<float>;

template <class T>
inline bool operator==(const FloatWeightTpl<T> &w1,
                       const FloatWeightTpl<T> &w2) {
  // Volatile qualifier thwarts over-aggressive compiler optimizations that
  // lead to problems esp. with NaturalLess().
  volatile T v1 = w1.Value();
  volatile T v2 = w2.Value();
  return v1 == v2;
}

// These seemingly unnecessary overloads are actually needed to make
// comparisons like FloatWeightTpl<float> == float compile.  If only the
// templated version exists, the FloatWeightTpl<float>(float) conversion
// won't be found.
inline bool operator==(const FloatWeightTpl<float> &w1,
                       const FloatWeightTpl<float> &w2) {
  return operator==<float>(w1, w2);
}

inline bool operator==(const FloatWeightTpl<double> &w1,
                       const FloatWeightTpl<double> &w2) {
  return operator==<double>(w1, w2);
}

template <class T>
inline bool operator!=(const FloatWeightTpl<T> &w1,
                       const FloatWeightTpl<T> &w2) {
  return !(w1 == w2);
}

inline bool operator!=(const FloatWeightTpl<float> &w1,
                       const FloatWeightTpl<float> &w2) {
  return operator!=<float>(w1, w2);
}

inline bool operator!=(const FloatWeightTpl<double> &w1,
                       const FloatWeightTpl<double> &w2) {
  return operator!=<double>(w1, w2);
}

template <class T>
inline bool ApproxEqual(const FloatWeightTpl<T> &w1,
                        const FloatWeightTpl<T> &w2, float delta = kDelta) {
  return w1.Value() <= w2.Value() + delta && w2.Value() <= w1.Value() + delta;
}

template <class T>
inline std::ostream &operator<<(std::ostream &strm,
                                const FloatWeightTpl<T> &w) {
  if (w.Value() == FloatLimits<T>::PosInfinity()) {
    return strm << "Infinity";
  } else if (w.Value() == FloatLimits<T>::NegInfinity()) {
    return strm << "-Infinity";
  } else if (w.Value() != w.Value()) {  // Fails for IEEE NaN.
    return strm << "BadNumber";
  } else {
    return strm << w.Value();
  }
}

template <class T>
inline std::istream &operator>>(std::istream &strm, FloatWeightTpl<T> &w) {
  string s;
  strm >> s;
  if (s == "Infinity") {
    w = FloatWeightTpl<T>(FloatLimits<T>::PosInfinity());
  } else if (s == "-Infinity") {
    w = FloatWeightTpl<T>(FloatLimits<T>::NegInfinity());
  } else {
    char *p;
    T f = strtod(s.c_str(), &p);
    if (p < s.c_str() + s.size()) {
      strm.clear(std::ios::badbit);
    } else {
      w = FloatWeightTpl<T>(f);
    }
  }
  return strm;
}

// Tropical semiring: (min, +, inf, 0).
template <class T>
class TropicalWeightTpl : public FloatWeightTpl<T> {
 public:
  using typename FloatWeightTpl<T>::ValueType;
  using FloatWeightTpl<T>::Value;
  using ReverseWeight = TropicalWeightTpl<T>;
  using Limits = FloatLimits<T>;

  constexpr TropicalWeightTpl() : FloatWeightTpl<T>() {}

  constexpr TropicalWeightTpl(T f) : FloatWeightTpl<T>(f) {}

  constexpr TropicalWeightTpl(const TropicalWeightTpl<T> &weight)
      : FloatWeightTpl<T>(weight) {}

  static const TropicalWeightTpl<T> &Zero() {
    static const TropicalWeightTpl zero(Limits::PosInfinity());
    return zero;
  }

  static const TropicalWeightTpl<T> &One() {
    static const TropicalWeightTpl one(0.0F);
    return one;
  }

  static const TropicalWeightTpl<T> &NoWeight() {
    static const TropicalWeightTpl no_weight(Limits::NumberBad());
    return no_weight;
  }

  static const string &Type() {
    static const string *const type =
        new string(string("tropical") +
                   FloatWeightTpl<T>::GetPrecisionString());
    return *type;
  }

  bool Member() const {
    // First part fails for IEEE NaN.
    return Value() == Value() && Value() != Limits::NegInfinity();
  }

  TropicalWeightTpl<T> Quantize(float delta = kDelta) const {
    if (!Member() || Value() == Limits::PosInfinity()) {
      return *this;
    } else {
      return TropicalWeightTpl<T>(floor(Value() / delta + 0.5F) * delta);
    }
  }

  TropicalWeightTpl<T> Reverse() const { return *this; }

  static constexpr uint64 Properties() {
    return kLeftSemiring | kRightSemiring | kCommutative | kPath | kIdempotent;
  }
};

// Single precision tropical weight.
using TropicalWeight = TropicalWeightTpl<float>;

template <class T>
inline TropicalWeightTpl<T> Plus(const TropicalWeightTpl<T> &w1,
                                 const TropicalWeightTpl<T> &w2) {
  if (!w1.Member() || !w2.Member()) return TropicalWeightTpl<T>::NoWeight();
  return w1.Value() < w2.Value() ? w1 : w2;
}

// See comment at operator==(FloatWeightTpl<float>, FloatWeightTpl<float>)
// for why these overloads are present.
inline TropicalWeightTpl<float> Plus(const TropicalWeightTpl<float> &w1,
                                     const TropicalWeightTpl<float> &w2) {
  return Plus<float>(w1, w2);
}

inline TropicalWeightTpl<double> Plus(const TropicalWeightTpl<double> &w1,
                                      const TropicalWeightTpl<double> &w2) {
  return Plus<double>(w1, w2);
}

template <class T>
inline TropicalWeightTpl<T> Times(const TropicalWeightTpl<T> &w1,
                                  const TropicalWeightTpl<T> &w2) {
  using Limits = FloatLimits<T>;
  if (!w1.Member() || !w2.Member()) return TropicalWeightTpl<T>::NoWeight();
  const T f1 = w1.Value();
  const T f2 = w2.Value();
  if (f1 == Limits::PosInfinity()) {
    return w1;
  } else if (f2 == Limits::PosInfinity()) {
    return w2;
  } else {
    return TropicalWeightTpl<T>(f1 + f2);
  }
}

inline TropicalWeightTpl<float> Times(const TropicalWeightTpl<float> &w1,
                                      const TropicalWeightTpl<float> &w2) {
  return Times<float>(w1, w2);
}

inline TropicalWeightTpl<double> Times(const TropicalWeightTpl<double> &w1,
                                       const TropicalWeightTpl<double> &w2) {
  return Times<double>(w1, w2);
}

template <class T>
inline TropicalWeightTpl<T> Divide(const TropicalWeightTpl<T> &w1,
                                   const TropicalWeightTpl<T> &w2,
                                   DivideType typ = DIVIDE_ANY) {
  using Limits = FloatLimits<T>;
  if (!w1.Member() || !w2.Member()) return TropicalWeightTpl<T>::NoWeight();
  const T f1 = w1.Value();
  const T f2 = w2.Value();
  if (f2 == Limits::PosInfinity()) {
    return Limits::NumberBad();
  } else if (f1 == Limits::PosInfinity()) {
    return Limits::PosInfinity();
  } else {
    return TropicalWeightTpl<T>(f1 - f2);
  }
}

inline TropicalWeightTpl<float> Divide(const TropicalWeightTpl<float> &w1,
                                       const TropicalWeightTpl<float> &w2,
                                       DivideType typ = DIVIDE_ANY) {
  return Divide<float>(w1, w2, typ);
}

inline TropicalWeightTpl<double> Divide(const TropicalWeightTpl<double> &w1,
                                        const TropicalWeightTpl<double> &w2,
                                        DivideType typ = DIVIDE_ANY) {
  return Divide<double>(w1, w2, typ);
}

template <class T, class V>
inline TropicalWeightTpl<T> Power(const TropicalWeightTpl<T> &weight, V n) {
  if (n == 0) {
    return TropicalWeightTpl<T>::One();
  } else if (weight == TropicalWeightTpl<T>::Zero()) {
    return TropicalWeightTpl<T>::Zero();
  }
  return TropicalWeightTpl<T>(weight.Value() * n);
}

// Specializes the library-wide template to use the above implementation; rules
// of function template instantiation require this be a full instantiation.

template <>
inline TropicalWeightTpl<float> Power<TropicalWeightTpl<float>>(
    const TropicalWeightTpl<float> &weight, size_t n) {
  return Power<float, size_t>(weight, n);
}

template <>
inline TropicalWeightTpl<double> Power<TropicalWeightTpl<double>>(
    const TropicalWeightTpl<double> &weight, size_t n) {
  return Power<double, size_t>(weight, n);
}


// Log semiring: (log(e^-x + e^-y), +, inf, 0).
template <class T>
class LogWeightTpl : public FloatWeightTpl<T> {
 public:
  using typename FloatWeightTpl<T>::ValueType;
  using FloatWeightTpl<T>::Value;
  using ReverseWeight = LogWeightTpl;
  using Limits = FloatLimits<T>;

  constexpr LogWeightTpl() : FloatWeightTpl<T>() {}

  constexpr LogWeightTpl(T f) : FloatWeightTpl<T>(f) {}

  constexpr LogWeightTpl(const LogWeightTpl<T> &weight)
      : FloatWeightTpl<T>(weight) {}

  static const LogWeightTpl &Zero() {
    static const LogWeightTpl zero(Limits::PosInfinity());
    return zero;
  }

  static const LogWeightTpl &One() {
    static const LogWeightTpl one(0.0F);
    return one;
  }

  static const LogWeightTpl &NoWeight() {
    static const LogWeightTpl no_weight(Limits::NumberBad());
    return no_weight;
  }

  static const string &Type() {
    static const string *const type =
        new string(string("log") + FloatWeightTpl<T>::GetPrecisionString());
    return *type;
  }

  bool Member() const {
    // First part fails for IEEE NaN.
    return Value() == Value() && Value() != Limits::NegInfinity();
  }

  LogWeightTpl<T> Quantize(float delta = kDelta) const {
    if (!Member() || Value() == Limits::PosInfinity()) {
      return *this;
    } else {
      return LogWeightTpl<T>(floor(Value() / delta + 0.5F) * delta);
    }
  }

  LogWeightTpl<T> Reverse() const { return *this; }

  static constexpr uint64 Properties() {
    return kLeftSemiring | kRightSemiring | kCommutative;
  }
};

// Single-precision log weight.
using LogWeight = LogWeightTpl<float>;

// Double-precision log weight.
using Log64Weight = LogWeightTpl<double>;

namespace internal {

// -log(e^-x + e^-y) = x - LogPosExp(y - x), assuming x >= 0.0.
inline double LogPosExp(double x) {
  DCHECK(!(x < 0));  // NB: NaN values are allowed.
  return log1p(exp(-x));
}

// -log(e^-x - e^-y) = x - LogNegExp(y - x), assuming x > 0.0.
inline double LogNegExp(double x) {
  DCHECK_GT(x, 0);
  return log1p(-exp(-x));
}

// a +_log b = -log(e^-a + e^-b) = KahanLogSum(a, b, ...).
// Kahan compensated summation provides an error bound that is
// independent of the number of addends. Assumes b >= a;
// c is the compensation.
inline double KahanLogSum(double a, double b, double *c) {
  DCHECK_GE(b, a);
  double y = -LogPosExp(b - a) - *c;
  double t = a + y;
  *c = (t - a) - y;
  return t;
}

// a -_log b = -log(e^-a - e^-b) = KahanLogDiff(a, b, ...).
// Kahan compensated summation provides an error bound that is
// independent of the number of addends. Assumes b > a;
// c is the compensation.
inline double KahanLogDiff(double a, double b, double *c) {
  DCHECK_GT(b, a);
  double y = -LogNegExp(b - a) - *c;
  double t = a + y;
  *c = (t - a) - y;
  return t;
}

}  // namespace internal

template <class T>
inline LogWeightTpl<T> Plus(const LogWeightTpl<T> &w1,
                            const LogWeightTpl<T> &w2) {
  using Limits = FloatLimits<T>;
  const T f1 = w1.Value();
  const T f2 = w2.Value();
  if (f1 == Limits::PosInfinity()) {
    return w2;
  } else if (f2 == Limits::PosInfinity()) {
    return w1;
  } else if (f1 > f2) {
    return LogWeightTpl<T>(f2 - internal::LogPosExp(f1 - f2));
  } else {
    return LogWeightTpl<T>(f1 - internal::LogPosExp(f2 - f1));
  }
}

inline LogWeightTpl<float> Plus(const LogWeightTpl<float> &w1,
                                const LogWeightTpl<float> &w2) {
  return Plus<float>(w1, w2);
}

inline LogWeightTpl<double> Plus(const LogWeightTpl<double> &w1,
                                 const LogWeightTpl<double> &w2) {
  return Plus<double>(w1, w2);
}

template <class T>
inline LogWeightTpl<T> Times(const LogWeightTpl<T> &w1,
                             const LogWeightTpl<T> &w2) {
  using Limits = FloatLimits<T>;
  if (!w1.Member() || !w2.Member()) return LogWeightTpl<T>::NoWeight();
  const T f1 = w1.Value();
  const T f2 = w2.Value();
  if (f1 == Limits::PosInfinity()) {
    return w1;
  } else if (f2 == Limits::PosInfinity()) {
    return w2;
  } else {
    return LogWeightTpl<T>(f1 + f2);
  }
}

inline LogWeightTpl<float> Times(const LogWeightTpl<float> &w1,
                                 const LogWeightTpl<float> &w2) {
  return Times<float>(w1, w2);
}

inline LogWeightTpl<double> Times(const LogWeightTpl<double> &w1,
                                  const LogWeightTpl<double> &w2) {
  return Times<double>(w1, w2);
}

template <class T>
inline LogWeightTpl<T> Divide(const LogWeightTpl<T> &w1,
                              const LogWeightTpl<T> &w2,
                              DivideType typ = DIVIDE_ANY) {
  using Limits = FloatLimits<T>;
  if (!w1.Member() || !w2.Member()) return LogWeightTpl<T>::NoWeight();
  const T f1 = w1.Value();
  const T f2 = w2.Value();
  if (f2 == Limits::PosInfinity()) {
    return Limits::NumberBad();
  } else if (f1 == Limits::PosInfinity()) {
    return Limits::PosInfinity();
  } else {
    return LogWeightTpl<T>(f1 - f2);
  }
}

inline LogWeightTpl<float> Divide(const LogWeightTpl<float> &w1,
                                  const LogWeightTpl<float> &w2,
                                  DivideType typ = DIVIDE_ANY) {
  return Divide<float>(w1, w2, typ);
}

inline LogWeightTpl<double> Divide(const LogWeightTpl<double> &w1,
                                   const LogWeightTpl<double> &w2,
                                   DivideType typ = DIVIDE_ANY) {
  return Divide<double>(w1, w2, typ);
}

template <class T, class V>
inline LogWeightTpl<T> Power(const LogWeightTpl<T> &weight, V n) {
  if (n == 0) {
    return LogWeightTpl<T>::One();
  } else if (weight == LogWeightTpl<T>::Zero()) {
    return LogWeightTpl<T>::Zero();
  }
  return LogWeightTpl<T>(weight.Value() * n);
}

// Specializes the library-wide template to use the above implementation; rules
// of function template instantiation require this be a full instantiation.

template <>
inline LogWeightTpl<float> Power<LogWeightTpl<float>>(
    const LogWeightTpl<float> &weight, size_t n) {
  return Power<float, size_t>(weight, n);
}

template <>
inline LogWeightTpl<double> Power<LogWeightTpl<double>>(
    const LogWeightTpl<double> &weight, size_t n) {
  return Power<double, size_t>(weight, n);
}

// Specialization using the Kahan compensated summation.
template <class T>
class Adder<LogWeightTpl<T>> {
 public:
  using Weight = LogWeightTpl<T>;

  explicit Adder(Weight w = Weight::Zero())
      : sum_(w.Value()),
        c_(0.0) { }

  Weight Add(const Weight &w) {
    using Limits = FloatLimits<T>;
    const T f = w.Value();
    if (f == Limits::PosInfinity()) {
      return Sum();
    } else if (sum_ == Limits::PosInfinity()) {
      sum_ = f;
      c_ = 0.0;
    } else if (f > sum_) {
      sum_ = internal::KahanLogSum(sum_, f, &c_);
    } else {
      sum_ = internal::KahanLogSum(f, sum_, &c_);
    }
    return Sum();
  }

  Weight Sum() { return Weight(sum_); }

  void Reset(Weight w = Weight::Zero()) {
    sum_ = w.Value();
    c_ = 0.0;
  }

 private:
  double sum_;
  double c_;   // Kahan compensation.
};

// MinMax semiring: (min, max, inf, -inf).
template <class T>
class MinMaxWeightTpl : public FloatWeightTpl<T> {
 public:
  using typename FloatWeightTpl<T>::ValueType;
  using FloatWeightTpl<T>::Value;
  using ReverseWeight = MinMaxWeightTpl<T>;
  using Limits = FloatLimits<T>;

  MinMaxWeightTpl() : FloatWeightTpl<T>() {}

  MinMaxWeightTpl(T f) : FloatWeightTpl<T>(f) {}

  MinMaxWeightTpl(const MinMaxWeightTpl<T> &weight)
      : FloatWeightTpl<T>(weight) {}

  static const MinMaxWeightTpl &Zero() {
    static const MinMaxWeightTpl zero(Limits::PosInfinity());
    return zero;
  }

  static const MinMaxWeightTpl &One() {
    static const MinMaxWeightTpl one(Limits::NegInfinity());
    return one;
  }

  static const MinMaxWeightTpl &NoWeight() {
    static const MinMaxWeightTpl no_weight(Limits::NumberBad());
    return no_weight;
  }

  static const string &Type() {
    static const string *const type =
        new string(string("minmax") + FloatWeightTpl<T>::GetPrecisionString());
    return *type;
  }

  // Fails for IEEE NaN.
  bool Member() const { return Value() == Value(); }

  MinMaxWeightTpl<T> Quantize(float delta = kDelta) const {
    // If one of infinities, or a NaN.
    if (!Member() ||
        Value() == Limits::NegInfinity() || Value() == Limits::PosInfinity()) {
      return *this;
    } else {
      return MinMaxWeightTpl<T>(floor(Value() / delta + 0.5F) * delta);
    }
  }

  MinMaxWeightTpl<T> Reverse() const { return *this; }

  static constexpr uint64 Properties() {
    return kLeftSemiring | kRightSemiring | kCommutative | kIdempotent | kPath;
  }
};

// Single-precision min-max weight.
using MinMaxWeight = MinMaxWeightTpl<float>;

// Min.
template <class T>
inline MinMaxWeightTpl<T> Plus(const MinMaxWeightTpl<T> &w1,
                               const MinMaxWeightTpl<T> &w2) {
  if (!w1.Member() || !w2.Member()) return MinMaxWeightTpl<T>::NoWeight();
  return w1.Value() < w2.Value() ? w1 : w2;
}

inline MinMaxWeightTpl<float> Plus(const MinMaxWeightTpl<float> &w1,
                                   const MinMaxWeightTpl<float> &w2) {
  return Plus<float>(w1, w2);
}

inline MinMaxWeightTpl<double> Plus(const MinMaxWeightTpl<double> &w1,
                                    const MinMaxWeightTpl<double> &w2) {
  return Plus<double>(w1, w2);
}

// Max.
template <class T>
inline MinMaxWeightTpl<T> Times(const MinMaxWeightTpl<T> &w1,
                                const MinMaxWeightTpl<T> &w2) {
  if (!w1.Member() || !w2.Member()) return MinMaxWeightTpl<T>::NoWeight();
  return w1.Value() >= w2.Value() ? w1 : w2;
}

inline MinMaxWeightTpl<float> Times(const MinMaxWeightTpl<float> &w1,
                                    const MinMaxWeightTpl<float> &w2) {
  return Times<float>(w1, w2);
}

inline MinMaxWeightTpl<double> Times(const MinMaxWeightTpl<double> &w1,
                                     const MinMaxWeightTpl<double> &w2) {
  return Times<double>(w1, w2);
}

// Defined only for special cases.
template <class T>
inline MinMaxWeightTpl<T> Divide(const MinMaxWeightTpl<T> &w1,
                                 const MinMaxWeightTpl<T> &w2,
                                 DivideType typ = DIVIDE_ANY) {
  if (!w1.Member() || !w2.Member()) return MinMaxWeightTpl<T>::NoWeight();
  // min(w1, x) = w2, w1 >= w2 => min(w1, x) = w2, x = w2.
  return w1.Value() >= w2.Value() ? w1 : FloatLimits<T>::NumberBad();
}

inline MinMaxWeightTpl<float> Divide(const MinMaxWeightTpl<float> &w1,
                                     const MinMaxWeightTpl<float> &w2,
                                     DivideType typ = DIVIDE_ANY) {
  return Divide<float>(w1, w2, typ);
}

inline MinMaxWeightTpl<double> Divide(const MinMaxWeightTpl<double> &w1,
                                      const MinMaxWeightTpl<double> &w2,
                                      DivideType typ = DIVIDE_ANY) {
  return Divide<double>(w1, w2, typ);
}

// Converts to tropical.
template <>
struct WeightConvert<LogWeight, TropicalWeight> {
  TropicalWeight operator()(const LogWeight &w) const { return w.Value(); }
};

template <>
struct WeightConvert<Log64Weight, TropicalWeight> {
  TropicalWeight operator()(const Log64Weight &w) const { return w.Value(); }
};

// Converts to log.
template <>
struct WeightConvert<TropicalWeight, LogWeight> {
  LogWeight operator()(const TropicalWeight &w) const { return w.Value(); }
};

template <>
struct WeightConvert<Log64Weight, LogWeight> {
  LogWeight operator()(const Log64Weight &w) const { return w.Value(); }
};

// Converts to log64.
template <>
struct WeightConvert<TropicalWeight, Log64Weight> {
  Log64Weight operator()(const TropicalWeight &w) const { return w.Value(); }
};

template <>
struct WeightConvert<LogWeight, Log64Weight> {
  Log64Weight operator()(const LogWeight &w) const { return w.Value(); }
};

// This function object returns random integers chosen from [0,
// num_random_weights). The boolean 'allow_zero' determines whether Zero() and
// zero divisors should be returned in the random weight generation. This is
// intended primary for testing.
template <class Weight>
class FloatWeightGenerate {
 public:
  explicit FloatWeightGenerate(
      bool allow_zero = true,
      const size_t num_random_weights = kNumRandomWeights)
      : allow_zero_(allow_zero), num_random_weights_(num_random_weights) {}

  Weight operator()() const {
    const int n = rand() % (num_random_weights_ + allow_zero_);  // NOLINT
    if (allow_zero_ && n == num_random_weights_) return Weight::Zero();
    return Weight(n);
  }

 private:
  // Permits Zero() and zero divisors.
  const bool allow_zero_;
  // Number of alternative random weights.
  const size_t num_random_weights_;
};

template <class T>
class WeightGenerate<TropicalWeightTpl<T>>
    : public FloatWeightGenerate<TropicalWeightTpl<T>> {
 public:
  using Weight = TropicalWeightTpl<T>;
  using Generate = FloatWeightGenerate<Weight>;

  explicit WeightGenerate(bool allow_zero = true,
                          size_t num_random_weights = kNumRandomWeights)
      : Generate(allow_zero, num_random_weights) {}

  Weight operator()() const { return Weight(Generate::operator()()); }
};

template <class T>
class WeightGenerate<LogWeightTpl<T>>
    : public FloatWeightGenerate<LogWeightTpl<T>> {
 public:
  using Weight = LogWeightTpl<T>;
  using Generate = FloatWeightGenerate<Weight>;

  explicit WeightGenerate(bool allow_zero = true,
                          size_t num_random_weights = kNumRandomWeights)
      : Generate(allow_zero, num_random_weights) {}

  Weight operator()() const { return Weight(Generate::operator()()); }
};

// This function object returns random integers chosen from [0,
// num_random_weights). The boolean 'allow_zero' determines whether Zero() and
// zero divisors should be returned in the random weight generation. This is
// intended primary for testing.
template <class T>
class WeightGenerate<MinMaxWeightTpl<T>> {
 public:
  using Weight = MinMaxWeightTpl<T>;

  explicit WeightGenerate(bool allow_zero = true,
                          size_t num_random_weights = kNumRandomWeights)
      : allow_zero_(allow_zero), num_random_weights_(num_random_weights) {}

  Weight operator()() const {
    const int n = (rand() %  // NOLINT
                   (2 * num_random_weights_ + allow_zero_)) -
                  num_random_weights_;
    if (allow_zero_ && n == num_random_weights_) {
      return Weight::Zero();
    } else if (n == -num_random_weights_) {
      return Weight::One();
    } else {
      return Weight(n);
    }
  }

 private:
  // Permits Zero() and zero divisors.
  const bool allow_zero_;
  // Number of alternative random weights.
  const size_t num_random_weights_;
};

}  // namespace fst

#endif  // FST_FLOAT_WEIGHT_H_