tests.hyp
2.16 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
a b c d e f g (f_0)
a b c d e f g (f_1)
a b c d e f g (f_2)
a b c d e f g (f_3)
a b c d e f g (f_4)
a b c d e f g (f_5)
a b c d e f g (f_6)
;;;
;;; This case fails if the alignment doesn't to an in-order traversal
;;; to initialize the alignment matrix
uh uh have along which go problem of my private (g_0)
uh uh have along which go problem of my private (g_1)
;;;
;;; Make sure two networks can be aligned together
a {bc / b } { e d / ef} (h_0)
a gh i bd e i th f (h_1)
a gh i bd e i n th f (h_2)
;; Test a couple alternations in the hyp file
th {e/is} is {th/t} en (i_1)
th {e/is} is {th/t} en (i_2)
;; Check alternations in both the ref and hyp
th { {e / @} is {w as / i / s / @ } / d is } is {th/t} en (i_3)
;; Check hyphenations (and alternations) in the ref and hyp to see if the '-F' fragment correct flag
find the fish ticks milk fee him {fi-/fig-} th- fi- -icks {-lk/-ik} -offee -him (i_4)
;; Check deletions and substitutions of hyphenated words
del del_withnull skip skip substitution flag sub_withnull flag (i_5)
;; Check to handle utterances without reference words
a b c e f g h i j k (empty-1)
d e f (empty-2)
;; Check some alternations in the hypothesis as well as in the reference
a c d (alt-1)
a c i d (alt-2)
a d (alt-3)
a {c / @} d (alt-4)
a {@ / c} d (alt-5)
a {d / @} d (alt-6)
a d @ e (alt-7)
a d e (alt-8)
a {e- / @} c (alt-9)
;;; Check the handling of optionally deletable
b e (od1-1)
b c e (od1-2)
b d e (od1-3)
b c i e (od1-4)
b s i e (od1-5)
e (od1-6)
f (od1-7)
;;;;;;;;;;;;;;;;;;;
;;; ambiguous cases
s s s (od2-1)
s s s (od2-2)
s s s (od2-3)
s s s (od2-4)
s s s (od2-5)
s s s (od2-6)
s s s (od2-7)
s s s (od2-8)
s s s (od2-9)
s s s (od2-10)
;;; Fragment interactions
b e (od3-1)
b c e (od3-2)
b d e (od3-3)
b c i e (od3-4)
b s i e (od3-5)
e (od3-6)
f (od3-7)
b ten the and (od3-8)
;;; Test passing through tags
a aa\;a b\;b\;b;hyp\;tag1;hyptag2 b;hyptag1 c;;hyptag2 d;hyptag1;hyptag2 (tags-1)
(tags-2)
a aa\;a b\;b\;b;hyptag1;hyp\;tag2 b;hyptag1 c;;hyptag2 d;hyptag1;hyptag2 (tags-3)
z aa\;a b\;b\;b;hyptag1;hyptag2 y;hyptag1 x;;hyptag2 w;hyptag1;hyptag2 (tags-4)
{ z aa\;a b\;b\;b;hyptag1;hyptag2 y;hyptag1 x;;hyptag2 w;hyptag1;hyptag2 / x x x x x x x x x x x x x } (tags-5)