align-compiled-mapped.cc 5.31 KB
// bin/align-compiled-mapped.cc

// Copyright 2009-2012  Microsoft Corporation, Karel Vesely
//                2014 Johns Hopkins University (Daniel Povey)
//
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "hmm/transition-model.h"
#include "hmm/hmm-utils.h"
#include "fstext/fstext-lib.h"
#include "decoder/decoder-wrappers.h"
#include "decoder/training-graph-compiler.h"
#include "decoder/decodable-matrix.h"
#include "lat/kaldi-lattice.h" // for {Compact}LatticeArc

int main(int argc, char *argv[]) {
  try {
    using namespace kaldi;
    typedef kaldi::int32 int32;
    using fst::SymbolTable;
    using fst::VectorFst;
    using fst::StdArc;

    const char *usage =
        "Generate alignments, reading log-likelihoods as matrices.\n"
        " (model is needed only for the integer mappings in its transition-model)\n"
        "Usage:   align-compiled-mapped [options] trans-model-in graphs-rspecifier feature-rspecifier alignments-wspecifier\n"
        "e.g.: \n"
        " nnet-align-compiled trans.mdl ark:graphs.fsts scp:train.scp ark:nnet.ali\n"
        "or:\n"
        " compile-train-graphs tree trans.mdl lex.fst ark:train.tra b, ark:- | \\\n"
        "   nnet-align-compiled trans.mdl ark:- scp:loglikes.scp t, ark:nnet.ali\n";

    ParseOptions po(usage);
    AlignConfig align_config;
    bool binary = true;
    BaseFloat acoustic_scale = 1.0;
    BaseFloat transition_scale = 1.0;
    BaseFloat self_loop_scale = 1.0;

    align_config.Register(&po);
    po.Register("binary", &binary, "Write output in binary mode");
    po.Register("transition-scale", &transition_scale,
                "Transition-probability scale [relative to acoustics]");
    po.Register("acoustic-scale", &acoustic_scale,
                "Scaling factor for acoustic likelihoods");
    po.Register("self-loop-scale", &self_loop_scale,
                "Scale of self-loop versus non-self-loop log probs [relative to acoustics]");
    po.Read(argc, argv);

    if (po.NumArgs() < 4 || po.NumArgs() > 5) {
      po.PrintUsage();
      exit(1);
    }

    std::string model_in_filename = po.GetArg(1);
    std::string fst_rspecifier = po.GetArg(2);
    std::string feature_rspecifier = po.GetArg(3);
    std::string alignment_wspecifier = po.GetArg(4);
    std::string scores_wspecifier = po.GetOptArg(5);

    TransitionModel trans_model;
    ReadKaldiObject(model_in_filename, &trans_model);

    SequentialBaseFloatMatrixReader loglikes_reader(feature_rspecifier);
    RandomAccessTableReader<fst::VectorFstHolder> fst_reader(fst_rspecifier);
    Int32VectorWriter alignment_writer(alignment_wspecifier);
    BaseFloatWriter scores_writer(scores_wspecifier);

    int num_done = 0, num_err = 0, num_retry = 0;
    double tot_like = 0.0;
    kaldi::int64 frame_count = 0;
    
    for (; !loglikes_reader.Done(); loglikes_reader.Next()) {
      std::string utt = loglikes_reader.Key();
      if (!fst_reader.HasKey(utt)) {
        KALDI_WARN << "No fst for utterance " << utt;
        num_err++;
        continue;
      }
      const Matrix<BaseFloat> &loglikes = loglikes_reader.Value();
      VectorFst<StdArc> decode_fst(fst_reader.Value(utt));
      // fst_reader.FreeCurrent();  // this stops copy-on-write of the fst
      // by deleting the fst inside the reader, since we're about to mutate
      // the fst by adding transition probs.

      if (loglikes.NumRows() == 0) {
        KALDI_WARN << "Empty loglikes matrix utterance: " << utt;
        num_err++;
        continue;
      }
      if (decode_fst.Start() == fst::kNoStateId) {
        KALDI_WARN << "Empty decoding graph for " << utt;
        num_err++;
        continue;
      }

      {  // Add transition-probs to the FST.
        std::vector<int32> disambig_syms;  // empty.
        AddTransitionProbs(trans_model, disambig_syms,
                           transition_scale, self_loop_scale,
                           &decode_fst);
      }

      DecodableMatrixScaledMapped decodable(trans_model, loglikes, acoustic_scale);

      AlignUtteranceWrapper(align_config, utt,
                            acoustic_scale, &decode_fst, &decodable,
                            &alignment_writer, &scores_writer,
                            &num_done, &num_err, &num_retry,
                            &tot_like, &frame_count);
    }
    KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count)
              << " over " << frame_count<< " frames.";
    KALDI_LOG << "Retried " << num_retry << " out of "
              << (num_done + num_err) << " utterances.";
    KALDI_LOG << "Done " << num_done << ", errors on " << num_err;
    return (num_done != 0 ? 0 : 1);
  } catch(const std::exception &e) {
    std::cerr << e.what();
    return -1;
  }
}