deterministic-fst-inl.h 18.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
// fstext/deterministic-fst-inl.h

// Copyright 2011-2012 Gilles Boulianne
//                2014 Telepoint Global Hosting Service, LLC. (Author: David Snyder)
//           2012-2015 Johns Hopkins University (author: Daniel Povey)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#ifndef KALDI_FSTEXT_DETERMINISTIC_FST_INL_H_
#define KALDI_FSTEXT_DETERMINISTIC_FST_INL_H_
#include "base/kaldi-common.h"
#include "fstext/fstext-utils.h"


namespace fst {
// Do not include this file directly.  It is included by deterministic-fst.h.

template<class Arc>
typename Arc::StateId
BackoffDeterministicOnDemandFst<Arc>::GetBackoffState(StateId s,
                                                      Weight *w) {
  ArcIterator<Fst<Arc> > aiter(fst_, s);
  if (aiter.Done()) // no arcs.
    return kNoStateId;
  const Arc &arc = aiter.Value();
  if (arc.ilabel == 0) {
    *w = arc.weight;
    return arc.nextstate;
  } else {
    return kNoStateId;
  }
}

template<class Arc>
typename Arc::Weight BackoffDeterministicOnDemandFst<Arc>::Final(StateId state) {
  Weight w = fst_.Final(state);
  if (w != Weight::Zero()) return w;
  Weight backoff_w;
  StateId backoff_state = GetBackoffState(state, &backoff_w);
  if (backoff_state == kNoStateId) return Weight::Zero();
  else return Times(backoff_w, this->Final(backoff_state));
}

template<class Arc>
BackoffDeterministicOnDemandFst<Arc>::BackoffDeterministicOnDemandFst(
    const Fst<Arc> &fst): fst_(fst) {
#ifdef KALDI_PARANOID
  KALDI_ASSERT(fst_.Properties(kILabelSorted|kIDeterministic, true) ==
               (kILabelSorted|kIDeterministic) &&
               "Input FST is not i-label sorted and deterministic.");
#endif
}

template<class Arc>
bool BackoffDeterministicOnDemandFst<Arc>::GetArc(
    StateId s, Label ilabel, Arc *oarc) {
  KALDI_ASSERT(ilabel != 0); //  We don't allow GetArc for epsilon.

  SortedMatcher<Fst<Arc> > sm(fst_, MATCH_INPUT, 1);
  sm.SetState(s);
  if (sm.Find(ilabel)) {
    const Arc &arc = sm.Value();
    *oarc = arc;
    return true;
  } else {
    Weight backoff_w;
    StateId backoff_state = GetBackoffState(s, &backoff_w);
    if (backoff_state == kNoStateId) return false;
    if (!this->GetArc(backoff_state, ilabel, oarc)) return false;
    oarc->weight = Times(oarc->weight, backoff_w);
    return true;
  }
}

template<class Arc>
UnweightedNgramFst<Arc>::UnweightedNgramFst(int n): n_(n) {
  // Starting state is an empty vector
  std::vector<Label> start_state;
  state_vec_.push_back(start_state);
  start_state_ = 0;
  state_map_[start_state] = 0;
}

template<class Arc>
bool UnweightedNgramFst<Arc>::GetArc(
  StateId s, Label ilabel, Arc *oarc) {

  // The state ids increment with each state we encounter.
  // if the assert fails, then we are trying to access
  // unseen states that are not immediately traversable.
  KALDI_ASSERT(static_cast<size_t>(s) < state_vec_.size());
  std::vector<Label> seq = state_vec_[s];
  // Update state info.
  seq.push_back(ilabel);
  if (seq.size() > n_-1) {
    // Remove oldest word in the history.
    seq.erase(seq.begin());
  }
  std::pair<const std::vector<Label>, StateId> new_state(
    seq,
    static_cast<Label>(state_vec_.size()));
  // Now get state id for destination state.
  typedef typename MapType::iterator IterType;
  std::pair<IterType, bool> result = state_map_.insert(new_state);
  if (result.second == true) {
    state_vec_.push_back(seq);
  }
  oarc->weight = Weight::One(); // Because the FST is unweightd.
  oarc->ilabel = ilabel;
  oarc->olabel = ilabel;
  oarc->nextstate = result.first->second; // The next state id.
  // All arcs can be matched.
  return true;
}

template<class Arc>
typename Arc::Weight UnweightedNgramFst<Arc>::Final(StateId state) {
  KALDI_ASSERT(state < static_cast<StateId>(state_vec_.size()));
  return Weight::One();
}

template<class Arc>
ComposeDeterministicOnDemandFst<Arc>::ComposeDeterministicOnDemandFst(
    DeterministicOnDemandFst<Arc> *fst1,
    DeterministicOnDemandFst<Arc> *fst2): fst1_(fst1), fst2_(fst2) {
  KALDI_ASSERT(fst1 != NULL && fst2 != NULL);
  if (fst1_->Start() == -1 || fst2_->Start() == -1) {
    start_state_ = -1;
    next_state_ = 0; // actually we don't care about this value.
  } else {
    start_state_ = 0;
    std::pair<StateId,StateId> start_pair(fst1_->Start(), fst2_->Start());
    state_map_[start_pair] = start_state_;
    state_vec_.push_back(start_pair);
    next_state_ = 1;
  }
}

template<class Arc>
typename Arc::Weight ComposeDeterministicOnDemandFst<Arc>::Final(StateId s) {
  KALDI_ASSERT(s < static_cast<StateId>(state_vec_.size()));
  const std::pair<StateId, StateId> &pr (state_vec_[s]);
  return Times(fst1_->Final(pr.first), fst2_->Final(pr.second));
}

template<class Arc>
bool ComposeDeterministicOnDemandFst<Arc>::GetArc(StateId s, Label ilabel,
                                                  Arc *oarc) {
  typedef typename MapType::iterator IterType;
  KALDI_ASSERT(ilabel != 0 &&
         "This program expects epsilon-free compact lattices as input");
  KALDI_ASSERT(s < static_cast<StateId>(state_vec_.size()));
  const std::pair<StateId, StateId> pr (state_vec_[s]);

  Arc arc1;
  if (!fst1_->GetArc(pr.first, ilabel, &arc1)) return false;
  if (arc1.olabel == 0) { // There is no output label on the
    // arc, so only the first state changes.
    std::pair<const std::pair<StateId, StateId>, StateId> new_value(
        std::pair<StateId, StateId>(arc1.nextstate, pr.second),
        next_state_);

    std::pair<IterType, bool> result = state_map_.insert(new_value);
    oarc->ilabel = ilabel;
    oarc->olabel = 0;
    oarc->nextstate = result.first->second;
    oarc->weight = arc1.weight;
    if (result.second == true) { // was inserted
      next_state_++;
      const std::pair<StateId, StateId> &new_pair (new_value.first);
      state_vec_.push_back(new_pair);
    }
    return true;
  }
  // There is an output label, so we need to traverse an arc on the
  // second fst also.
  Arc arc2;
  if (!fst2_->GetArc(pr.second, arc1.olabel, &arc2)) return false;
  std::pair<const std::pair<StateId, StateId>, StateId> new_value(
      std::pair<StateId, StateId>(arc1.nextstate, arc2.nextstate),
      next_state_);
  std::pair<IterType, bool> result =
      state_map_.insert(new_value);
  oarc->ilabel = ilabel;
  oarc->olabel = arc2.olabel;
  oarc->nextstate = result.first->second;
  oarc->weight = Times(arc1.weight, arc2.weight);
  if (result.second == true) { // was inserted
    next_state_++;
    const std::pair<StateId, StateId> &new_pair (new_value.first);
    state_vec_.push_back(new_pair);
  }
  return true;
}

template<class Arc>
inline size_t CacheDeterministicOnDemandFst<Arc>::GetIndex(
    StateId src_state, Label ilabel) {
  const StateId p1 = 26597, p2 = 50329; // these are two
  // values that I drew at random from a table of primes.
  // note: num_cached_arcs_ > 0.

  // We cast to size_t before the modulus, to ensure the
  // result is positive.
  return static_cast<size_t>(src_state * p1 + ilabel * p2) %
      static_cast<size_t>(num_cached_arcs_);
}

template<class Arc>
CacheDeterministicOnDemandFst<Arc>::CacheDeterministicOnDemandFst(
    DeterministicOnDemandFst<Arc> *fst,
    StateId num_cached_arcs): fst_(fst),
                              num_cached_arcs_(num_cached_arcs),
                              cached_arcs_(num_cached_arcs) {
  KALDI_ASSERT(num_cached_arcs > 0);
  for (StateId i = 0; i < num_cached_arcs; i++)
    cached_arcs_[i].first = kNoStateId; // Invalidate all elements of the cache.
}

template<class Arc>
bool CacheDeterministicOnDemandFst<Arc>::GetArc(StateId s, Label ilabel,
                                                Arc *oarc) {
  // Note: we don't cache anything in case a requested arc does not exist.
  // In the uses that we imagine this will be put to, essentially all the
  // requested arcs will exist.  This only affects efficiency.
  KALDI_ASSERT(s >= 0 && ilabel != 0);
  size_t index = this->GetIndex(s, ilabel);
  if (cached_arcs_[index].first == s &&
      cached_arcs_[index].second.ilabel == ilabel) {
    *oarc = cached_arcs_[index].second;
    return true;
  } else {
    Arc arc;
    if (fst_->GetArc(s, ilabel, &arc)) {
      cached_arcs_[index].first = s;
      cached_arcs_[index].second = arc;
      *oarc = arc;
      return true;
    } else {
      return false;
    }
  }
}

template<class Arc>
LmExampleDeterministicOnDemandFst<Arc>::LmExampleDeterministicOnDemandFst(
    void *lm, Label bos_symbol, Label eos_symbol):
    lm_(lm), bos_symbol_(bos_symbol), eos_symbol_(eos_symbol) {
  std::vector<Label> begin_state; // history state corresponding to beginning of sentence
  begin_state.push_back(bos_symbol); // Depending how your LM is set up, you might
  // want to have a history vector with more than one bos_symbol on it.

  state_vec_.push_back(begin_state);
  start_state_ = 0;
  state_map_[begin_state] = 0;
}

template<class Arc>
typename Arc::Weight LmExampleDeterministicOnDemandFst<Arc>::Final(StateId s) {
  KALDI_ASSERT(static_cast<size_t>(s) < state_vec_.size());
  // In a real version you would probably use the following variable somehow
  // (commenting it because it's generating warnings).
  // const std::vector<Label> &wseq = state_vec_[s];
  float log_prob = -0.5; // e.g. log_prob = lm->GetLogProb(wseq, eos_symbol_);
  return Weight(-log_prob); // assuming weight is FloatWeight.
}

template<class Arc>
bool LmExampleDeterministicOnDemandFst<Arc>::GetArc(
    StateId s, Label ilabel, Arc *oarc) {
  KALDI_ASSERT(static_cast<size_t>(s) < state_vec_.size());
  std::vector<Label> wseq = state_vec_[s];
  float log_prob = -0.25; // e.g. log_prob = lm->GetLogProb(wseq, ilabel);
  wseq.push_back(ilabel); // the code might be different if your histories are the
  // other way around.

  while (0) { // e.g. while !lm->HistoryStateExists(wseq)
    wseq.erase(wseq.begin(), wseq.begin() + 1); // remove most distant element of history.
    // note: if your histories are the other way round, you might just do
    // wseq.pop() here.
  }
  if (log_prob == -numeric_limits<float>::infinity()) { // assume this
    // is what happens if prob of the word is zero.  Some LMs will never
    // return zero.
    return false; // no arc.
  }
  std::pair<const std::vector<Label>, StateId> new_value(
      wseq,
      static_cast<Label>(state_vec_.size()));

  // Now get state id for destination state.
  typedef typename MapType::iterator IterType;
  std::pair<IterType, bool> result = state_map_.insert(new_value);
  if (result.second == true) // was inserted
    state_vec_.push_back(wseq);
  oarc->ilabel = ilabel;
  oarc->olabel = ilabel;
  oarc->nextstate = result.first->second; // the next-state id.
  oarc->weight = Weight(-log_prob);
  return true;
}


template<class Arc>
void ComposeDeterministicOnDemand(const Fst<Arc> &fst1,
                                  DeterministicOnDemandFst<Arc> *fst2,
                                  MutableFst<Arc> *fst_composed) {
  typedef typename Arc::Weight Weight;
  typedef typename Arc::StateId StateId;
  typedef std::pair<StateId, StateId> StatePair;
  typedef unordered_map<StatePair, StateId,
    kaldi::PairHasher<StateId> > MapType;
  typedef typename MapType::iterator IterType;

  fst_composed->DeleteStates();

  MapType state_map;
  std::queue<StatePair> state_queue;

  // Set start state in fst_composed.
  StateId s1 = fst1.Start(),
          s2 = fst2->Start(),
          start_state = fst_composed->AddState();
  StatePair start_pair(s1, s2);
  state_queue.push(start_pair);
  fst_composed->SetStart(start_state);
  // A mapping between pairs of states in fst1 and fst2 and the corresponding
  // state in fst_composed.
  std::pair<const StatePair, StateId> start_map(start_pair, start_state);
  std::pair<IterType, bool> result = state_map.insert(start_map);
  KALDI_ASSERT(result.second == true);

  while (!state_queue.empty()) {
    StatePair q = state_queue.front();
    StateId q1 = q.first,
            q2 = q.second;
    state_queue.pop();
    // If the product of the final weights of the two fsts is non-zero then
    // we can set a final-prob in fst_composed
    Weight final_weight = Times(fst1.Final(q1), fst2->Final(q2));
    if (final_weight != Weight::Zero()) {
      KALDI_ASSERT(state_map.find(q) != state_map.end());
      fst_composed->SetFinal(state_map[q], final_weight);
    }

    // for each pair of edges from fst1 and fst2 at q1 and q2.
    for (ArcIterator<Fst<Arc> > aiter(fst1, q1); !aiter.Done(); aiter.Next()) {
      const Arc &arc1 = aiter.Value();
      Arc arc2;
      StatePair next_pair;
      StateId next_state1 = arc1.nextstate,
              next_state2,
              next_state;
      // If there is an epsilon on the arc of fst1 we transition to the next
      // state but keep fst2 at the current state.
      if (arc1.olabel == 0) {
        next_state2 = q2;
      } else {
        bool match = fst2->GetArc(q2, arc1.olabel, &arc2);
        if (!match)  // There is no matching arc -> nothing to do.
          continue;
        next_state2 = arc2.nextstate;
      }
      next_pair = StatePair(next_state1, next_state2);
      IterType sitr = state_map.find(next_pair);
      // If sitr == state_map.end() then the state isn't in fst_composed yet.
      if (sitr == state_map.end()) {
        next_state = fst_composed->AddState();
        std::pair<const StatePair, StateId> new_state(
          next_pair, next_state);
        std::pair<IterType, bool> result = state_map.insert(new_state);
        // Since we already checked if state_map contained new_state,
        // it should always be added if we reach here.
        KALDI_ASSERT(result.second == true);
        state_queue.push(next_pair);
      // If sitr != state_map.end() then the next state is already in
      // the state_map.
      } else {
        next_state = sitr->second;
      }
      if (arc1.olabel == 0) {
        fst_composed->AddArc(state_map[q], Arc(arc1.ilabel, 0, arc1.weight,
                                               next_state));
      } else {
        fst_composed->AddArc(state_map[q], Arc(arc1.ilabel, arc2.olabel,
          Times(arc1.weight, arc2.weight), next_state));
      }
    }
  }
}


// we are doing *fst_composed = Compose(Inverse(*left), right).
template<class Arc>
void ComposeDeterministicOnDemandInverse(const Fst<Arc> &right,
                                         DeterministicOnDemandFst<Arc> *left,
                                         MutableFst<Arc> *fst_composed) {
  typedef typename Arc::Weight Weight;
  typedef typename Arc::StateId StateId;
  typedef std::pair<StateId, StateId> StatePair;
  typedef unordered_map<StatePair, StateId,
    kaldi::PairHasher<StateId> > MapType;
  typedef typename MapType::iterator IterType;

  fst_composed->DeleteStates();

  // the queue and map contain pairs (state-in-left, state-in-right)
  MapType state_map;
  std::queue<StatePair> state_queue;

  // Set start state in fst_composed.
  StateId s_left = left->Start(),
      s_right = right.Start();
  if (s_left == kNoStateId || s_right == kNoStateId)
    return;  // Empty result.
  StatePair start_pair(s_left, s_right);
  StateId start_state = fst_composed->AddState();
  state_queue.push(start_pair);
  fst_composed->SetStart(start_state);
  // A mapping between pairs of states in *left and right, and the corresponding
  // state in fst_composed.
  std::pair<const StatePair, StateId> start_map(start_pair, start_state);
  std::pair<IterType, bool> result = state_map.insert(start_map);
  KALDI_ASSERT(result.second == true);

  while (!state_queue.empty()) {
    StatePair q = state_queue.front();
    StateId q_left = q.first,
            q_right = q.second;
    state_queue.pop();
    // If the product of the final weights of the two fsts is non-zero then
    // we can set a final-prob in fst_composed
    Weight final_weight = Times(left->Final(q_left), right.Final(q_right));
    if (final_weight != Weight::Zero()) {
      KALDI_ASSERT(state_map.find(q) != state_map.end());
      fst_composed->SetFinal(state_map[q], final_weight);
    }

    for (ArcIterator<Fst<Arc> > aiter(right, q_right); !aiter.Done(); aiter.Next()) {
      const Arc &arc_right = aiter.Value();
      Arc arc_left;
      StatePair next_pair;
      StateId next_state_right = arc_right.nextstate,
              next_state_left,
              next_state;
      // If there is an epsilon on the input side of the rigth arc, we
      // transition to the next state of the output but keep 'left' at the
      // current state.
      if (arc_right.ilabel == 0) {
        next_state_left = q_left;
      } else {
        bool match = left->GetArc(q_left, arc_right.ilabel, &arc_left);
        if (!match)  // There is no matching arc -> nothing to do.
          continue;
        // the next 'swap' is because we are composing with the inverse of
        // *left.  Just removing the swap statement wouldn't let us compose
        // with non-inverted *left though, because the GetArc function call
        // above interprets the second argument as an ilabel not an olabel.
        std::swap(arc_left.ilabel, arc_left.olabel);
        next_state_left = arc_left.nextstate;
      }
      next_pair = StatePair(next_state_left, next_state_right);
      IterType sitr = state_map.find(next_pair);
      // If sitr == state_map.end() then the state isn't in fst_composed yet.
      if (sitr == state_map.end()) {
        next_state = fst_composed->AddState();
        std::pair<const StatePair, StateId> new_state(
          next_pair, next_state);
        std::pair<IterType, bool> result = state_map.insert(new_state);
        // Since we already checked if state_map contained new_state,
        // it should always be added if we reach here.
        KALDI_ASSERT(result.second == true);
        state_queue.push(next_pair);
      // If sitr != state_map.end() then the next state is already in
      // the state_map.
      } else {
        next_state = sitr->second;
      }
      if (arc_right.ilabel == 0) {
        // we didn't get an actual arc from the left FST.
        fst_composed->AddArc(state_map[q], Arc(0, arc_right.olabel,
                                               arc_right.weight,
                                               next_state));
      } else {
        fst_composed->AddArc(state_map[q],
                             Arc(arc_left.ilabel, arc_right.olabel,
                                 Times(arc_left.weight, arc_right.weight),
                                 next_state));
      }
    }
  }
}



} // end namespace fst


#endif