gmm-acc-mllt.cc
4.57 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// gmmbin/gmm-acc-mllt.cc
// Copyright 2009-2011 Microsoft Corporation
// 2014 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "hmm/transition-model.h"
#include "transform/mllt.h"
#include "hmm/posterior.h"
int main(int argc, char *argv[]) {
using namespace kaldi;
try {
const char *usage =
"Accumulate MLLT (global STC) statistics\n"
"Usage: gmm-acc-mllt [options] <model-in> <feature-rspecifier> <posteriors-rspecifier> <stats-out>\n"
"e.g.: \n"
" gmm-acc-mllt 1.mdl scp:train.scp ark:1.post 1.macc\n";
ParseOptions po(usage);
bool binary = true;
BaseFloat rand_prune = 0.25;
po.Register("binary", &binary, "Write output in binary mode");
po.Register("rand-prune", &rand_prune, "Randomized pruning parameter to speed up "
"accumulation (larger -> more pruning. May exceed one).");
po.Read(argc, argv);
if (po.NumArgs() != 4) {
po.PrintUsage();
exit(1);
}
std::string model_filename = po.GetArg(1),
feature_rspecifier = po.GetArg(2),
posteriors_rspecifier = po.GetArg(3),
accs_wxfilename = po.GetArg(4);
using namespace kaldi;
typedef kaldi::int32 int32;
AmDiagGmm am_gmm;
TransitionModel trans_model;
{
bool binary;
Input ki(model_filename, &binary);
trans_model.Read(ki.Stream(), binary);
am_gmm.Read(ki.Stream(), binary);
}
MlltAccs mllt_accs(am_gmm.Dim(), rand_prune);
double tot_like = 0.0;
double tot_t = 0.0;
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier);
int32 num_done = 0, num_no_posterior = 0, num_other_error = 0;
for (; !feature_reader.Done(); feature_reader.Next()) {
std::string key = feature_reader.Key();
if (!posteriors_reader.HasKey(key)) {
num_no_posterior++;
} else {
const Matrix<BaseFloat> &mat = feature_reader.Value();
const Posterior &posterior = posteriors_reader.Value(key);
if (static_cast<int32>(posterior.size()) != mat.NumRows()) {
KALDI_WARN << "Posterior vector has wrong size "<< (posterior.size()) << " vs. "<< (mat.NumRows());
num_other_error++;
continue;
}
num_done++;
BaseFloat tot_like_this_file = 0.0, tot_weight = 0.0;
Posterior pdf_posterior;
ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior);
for (size_t i = 0; i < posterior.size(); i++) {
for (size_t j = 0; j < pdf_posterior[i].size(); j++) {
int32 pdf_id = pdf_posterior[i][j].first;
BaseFloat weight = pdf_posterior[i][j].second;
tot_like_this_file += mllt_accs.AccumulateFromGmm(am_gmm.GetPdf(pdf_id),
mat.Row(i),
weight) * weight;
tot_weight += weight;
}
}
KALDI_LOG << "Average like for this file is "
<< (tot_like_this_file/tot_weight) << " over "
<< tot_weight << " frames.";
tot_like += tot_like_this_file;
tot_t += tot_weight;
if (num_done % 10 == 0)
KALDI_LOG << "Avg like per frame so far is "
<< (tot_like/tot_t);
}
}
KALDI_LOG << "Done " << num_done << " files, " << num_no_posterior
<< " with no posteriors, " << num_other_error
<< " with other errors.";
KALDI_LOG << "Overall avg like per frame (Gaussian only) = "
<< (tot_like/tot_t) << " over " << tot_t << " frames.";
WriteKaldiObject(mllt_accs, accs_wxfilename, binary);
KALDI_LOG << "Written accs.";
return (num_done != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}