nnet-parallel-component.h
11.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// nnet/nnet-parallel-component.h
// Copyright 2014 Brno University of Technology (Author: Karel Vesely)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET_NNET_PARALLEL_COMPONENT_H_
#define KALDI_NNET_NNET_PARALLEL_COMPONENT_H_
#include <string>
#include <vector>
#include <sstream>
#include "nnet/nnet-component.h"
#include "nnet/nnet-utils.h"
#include "cudamatrix/cu-math.h"
namespace kaldi {
namespace nnet1 {
class ParallelComponent : public MultistreamComponent {
public:
ParallelComponent(int32 dim_in, int32 dim_out):
MultistreamComponent(dim_in, dim_out)
{ }
~ParallelComponent()
{ }
Component* Copy() const { return new ParallelComponent(*this); }
ComponentType GetType() const { return kParallelComponent; }
const Nnet& GetNestedNnet(int32 id) const { return nnet_.at(id); }
Nnet& GetNestedNnet(int32 id) { return nnet_.at(id); }
void InitData(std::istream &is) {
// define options
std::vector<std::string> nested_nnet_proto;
std::vector<std::string> nested_nnet_filename;
// parse config
std::string token;
while (is >> std::ws, !is.eof()) {
ReadToken(is, false, &token);
/**/ if (token == "<NestedNnet>" || token == "<NestedNnetFilename>") {
while (is >> std::ws, !is.eof()) {
std::string file_or_end;
ReadToken(is, false, &file_or_end);
if (file_or_end == "</NestedNnet>" ||
file_or_end == "</NestedNnetFilename>") break;
nested_nnet_filename.push_back(file_or_end);
}
} else if (token == "<NestedNnetProto>") {
while (is >> std::ws, !is.eof()) {
std::string file_or_end;
ReadToken(is, false, &file_or_end);
if (file_or_end == "</NestedNnetProto>") break;
nested_nnet_proto.push_back(file_or_end);
}
} else { KALDI_ERR << "Unknown token " << token << ", typo in config?"
<< " (NestedNnet|NestedNnetFilename|NestedNnetProto)";
}
}
// Initialize,
// First, read nnets from files,
if (nested_nnet_filename.size() > 0) {
for (int32 i = 0; i < nested_nnet_filename.size(); i++) {
Nnet nnet;
nnet.Read(nested_nnet_filename[i]);
nnet_.push_back(nnet);
KALDI_LOG << "Loaded nested <Nnet> from file : "
<< nested_nnet_filename[i];
}
}
// Second, initialize nnets from prototypes,
if (nested_nnet_proto.size() > 0) {
for (int32 i = 0; i < nested_nnet_proto.size(); i++) {
Nnet nnet;
nnet.Init(nested_nnet_proto[i]);
nnet_.push_back(nnet);
KALDI_LOG << "Initialized nested <Nnet> from prototype : "
<< nested_nnet_proto[i];
}
}
// Check dim-sum of nested nnets,
int32 nnet_input_sum = 0, nnet_output_sum = 0;
for (int32 i = 0; i < nnet_.size(); i++) {
nnet_input_sum += nnet_[i].InputDim();
nnet_output_sum += nnet_[i].OutputDim();
}
KALDI_ASSERT(InputDim() == nnet_input_sum);
KALDI_ASSERT(OutputDim() == nnet_output_sum);
}
void ReadData(std::istream &is, bool binary) {
// read
ExpectToken(is, binary, "<NestedNnetCount>");
int32 nnet_count;
ReadBasicType(is, binary, &nnet_count);
for (int32 i = 0; i < nnet_count; i++) {
ExpectToken(is, binary, "<NestedNnet>");
int32 dummy;
ReadBasicType(is, binary, &dummy);
Nnet nnet;
nnet.Read(is, binary);
nnet_.push_back(nnet);
}
ExpectToken(is, binary, "</ParallelComponent>");
// check dim-sum of nested nnets
int32 nnet_input_sum = 0, nnet_output_sum = 0;
for (int32 i = 0; i < nnet_.size(); i++) {
nnet_input_sum += nnet_[i].InputDim();
nnet_output_sum += nnet_[i].OutputDim();
}
KALDI_ASSERT(InputDim() == nnet_input_sum);
KALDI_ASSERT(OutputDim() == nnet_output_sum);
}
void WriteData(std::ostream &os, bool binary) const {
// useful dims
int32 nnet_count = nnet_.size();
//
WriteToken(os, binary, "<NestedNnetCount>");
WriteBasicType(os, binary, nnet_count);
if (!binary) os << "\n";
for (int32 i = 0; i < nnet_count; i++) {
WriteToken(os, binary, "<NestedNnet>");
WriteBasicType(os, binary, i+1);
if (!binary) os << "\n";
nnet_[i].Write(os, binary);
}
WriteToken(os, binary, "</ParallelComponent>");
}
int32 NumParams() const {
int32 ans = 0;
for (int32 i = 0; i < nnet_.size(); i++) {
ans += nnet_[i].NumParams();
}
return ans;
}
void GetGradient(VectorBase<BaseFloat>* gradient) const {
KALDI_ASSERT(gradient->Dim() == NumParams());
int32 offset = 0;
for (int32 i = 0; i < nnet_.size(); i++) {
int32 n_params = nnet_[i].NumParams();
Vector<BaseFloat> gradient_aux; // we need 'Vector<>',
nnet_[i].GetGradient(&gradient_aux); // copy gradient from Nnet,
gradient->Range(offset, n_params).CopyFromVec(gradient_aux);
offset += n_params;
}
KALDI_ASSERT(offset == NumParams());
}
void GetParams(VectorBase<BaseFloat>* params) const {
KALDI_ASSERT(params->Dim() == NumParams());
int32 offset = 0;
for (int32 i = 0; i < nnet_.size(); i++) {
int32 n_params = nnet_[i].NumParams();
Vector<BaseFloat> params_aux; // we need 'Vector<>',
nnet_[i].GetParams(¶ms_aux); // copy params from Nnet,
params->Range(offset, n_params).CopyFromVec(params_aux);
offset += n_params;
}
KALDI_ASSERT(offset == NumParams());
}
void SetParams(const VectorBase<BaseFloat>& params) {
KALDI_ASSERT(params.Dim() == NumParams());
int32 offset = 0;
for (int32 i = 0; i < nnet_.size(); i++) {
int32 n_params = nnet_[i].NumParams();
nnet_[i].SetParams(params.Range(offset, n_params));
offset += n_params;
}
KALDI_ASSERT(offset == NumParams());
}
std::string Info() const {
std::ostringstream os;
os << "\n";
for (int32 i = 0; i < nnet_.size(); i++) {
os << "nested_network #" << i+1 << " {\n"
<< nnet_[i].Info()
<< "}\n";
}
std::string s(os.str());
s.erase(s.end() -1); // removing last '\n'
return s;
}
std::string InfoGradient() const {
std::ostringstream os;
os << "\n";
for (int32 i = 0; i < nnet_.size(); i++) {
os << "nested_gradient #" << i+1 << " {\n"
<< nnet_[i].InfoGradient(false)
<< "}\n";
}
std::string s(os.str());
s.erase(s.end() -1); // removing last '\n'
return s;
}
std::string InfoPropagate() const {
std::ostringstream os;
for (int32 i = 0; i < nnet_.size(); i++) {
os << "nested_propagate #" << i+1 << " {\n"
<< nnet_[i].InfoPropagate(false)
<< "}\n";
}
return os.str();
}
std::string InfoBackPropagate() const {
std::ostringstream os;
for (int32 i = 0; i < nnet_.size(); i++) {
os << "nested_backpropagate #" << i+1 << " {\n"
<< nnet_[i].InfoBackPropagate(false)
<< "}\n";
}
return os.str();
}
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// column-offsets for data buffers 'in,out',
int32 input_offset = 0, output_offset = 0;
// loop over nnets,
for (int32 i = 0; i < nnet_.size(); i++) {
// get the data 'windows',
CuSubMatrix<BaseFloat> src(
in.ColRange(input_offset, nnet_[i].InputDim())
);
CuSubMatrix<BaseFloat> tgt(
out->ColRange(output_offset, nnet_[i].OutputDim())
);
// forward through auxiliary matrix, as 'Propagate' requires 'CuMatrix',
CuMatrix<BaseFloat> tgt_aux;
nnet_[i].Propagate(src, &tgt_aux);
tgt.CopyFromMat(tgt_aux);
// advance the offsets,
input_offset += nnet_[i].InputDim();
output_offset += nnet_[i].OutputDim();
}
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// column-offsets for data buffers 'in,out',
int32 input_offset = 0, output_offset = 0;
// loop over nnets,
for (int32 i = 0; i < nnet_.size(); i++) {
// get the data 'windows',
CuSubMatrix<BaseFloat> src(
out_diff.ColRange(output_offset, nnet_[i].OutputDim())
);
CuSubMatrix<BaseFloat> tgt(
in_diff->ColRange(input_offset, nnet_[i].InputDim())
);
// ::Backpropagate through auxiliary matrix (CuMatrix in the interface),
CuMatrix<BaseFloat> tgt_aux;
nnet_[i].Backpropagate(src, &tgt_aux);
tgt.CopyFromMat(tgt_aux);
// advance the offsets,
input_offset += nnet_[i].InputDim();
output_offset += nnet_[i].OutputDim();
}
}
void Update(const CuMatrixBase<BaseFloat> &input,
const CuMatrixBase<BaseFloat> &diff) {
{ } // do nothing
}
/**
* Overriding the default,
* which was UpdatableComponent::SetTrainOptions(...)
*/
void SetTrainOptions(const NnetTrainOptions &opts) {
for (int32 i = 0; i < nnet_.size(); i++) {
nnet_[i].SetTrainOptions(opts);
}
}
/**
* Overriding the default,
* which was UpdatableComponent::SetLearnRateCoef(...)
*/
void SetLearnRateCoef(BaseFloat val) {
// loop over nnets,
for (int32 i = 0; i < nnet_.size(); i++) {
// loop over components,
for (int32 j = 0; j < nnet_[i].NumComponents(); j++) {
if (nnet_[i].GetComponent(j).IsUpdatable()) {
UpdatableComponent& comp =
dynamic_cast<UpdatableComponent&>(nnet_[i].GetComponent(j));
// set the value,
comp.SetLearnRateCoef(val);
}
}
}
}
/**
* Overriding the default,
* which was UpdatableComponent::SetBiasLearnRateCoef(...)
*/
void SetBiasLearnRateCoef(BaseFloat val) {
// loop over nnets,
for (int32 i = 0; i < nnet_.size(); i++) {
// loop over components,
for (int32 j = 0; j < nnet_[i].NumComponents(); j++) {
if (nnet_[i].GetComponent(j).IsUpdatable()) {
UpdatableComponent& comp =
dynamic_cast<UpdatableComponent&>(nnet_[i].GetComponent(j));
// set the value,
comp.SetBiasLearnRateCoef(val);
}
}
}
}
/**
* Overriding the default,
* which was MultistreamComponent::SetSeqLengths(...)
*/
void SetSeqLengths(const std::vector<int32> &sequence_lengths) {
sequence_lengths_ = sequence_lengths;
// loop over nnets,
for (int32 i = 0; i < nnet_.size(); i++) {
nnet_[i].SetSeqLengths(sequence_lengths);
}
}
private:
std::vector<Nnet> nnet_;
};
} // namespace nnet1
} // namespace kaldi
#endif // KALDI_NNET_NNET_PARALLEL_COMPONENT_H_