nnet-compile-utils.cc 18.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
// nnet3/nnet-compile-utils.cc

// Copyright      2015-2017  Johns Hopkins University (author: Daniel Povey)
//                2015                           (author: Vijayaditya Peddinti)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <iterator>
#include <sstream>
#include "util/common-utils.h"
#include "nnet3/nnet-compile-utils.h"

namespace kaldi {
namespace nnet3 {

/**
   Gets counts of submatrices (the 1st members of pairs) in submat_lists.
   Also outputs, to 'submats_with_large_counts', a list of submatrix indexes
   that have counts over half of submat_lists.size().  (These will be separated
   out into their own AddRows() commands).
 */
void GetSubmatCounts(
    const std::vector<std::vector<std::pair<int32, int32> > > &submat_lists,
    std::unordered_map<int32,int32> *submat_counts,
    std::vector<int32> *submats_with_large_counts) {
  auto iter = submat_lists.begin(), end = submat_lists.end();
  for (; iter != end; ++iter) {
    std::vector<std::pair<int32, int32> >::const_iterator
        iter2 = iter->begin(), end2 = iter->end();
    for (; iter2 != end2; ++iter2) {
      int32 submat_index = iter2->first;
      KALDI_ASSERT(submat_index >= 0);  // We don't expect -1's in submat_lists.
      std::unordered_map<int32,int32>::iterator
          iter = submat_counts->find(submat_index);
      if (iter == submat_counts->end())
        (*submat_counts)[submat_index] = 1;
      else
        iter->second++;
    }
  }
  auto counts_iter = submat_counts->begin(),
      counts_end = submat_counts->end();
  size_t cutoff = submat_lists.size() / 2;
  for (; counts_iter != counts_end; ++counts_iter)
    if (counts_iter->second > cutoff)
      submats_with_large_counts->push_back(counts_iter->first);
}

/**
   This function, used in SplitLocations(), is used to make separate
   'split lists' for certain high-count submatrix indexes, specified by
   the user in 'submats_to_separate'.  These split
   lists will be lists of pairs that are all either (-1, 1) or (submatrix_index, x)
   for a particular submatrix index (constant within the split list).
   These high-count lists will be written to 'split_lists'; they
   will eventually compile to AddRows() commands.  We write the remaining
   members of the lists in 'submat_lists' (the ones that did not make it
   into 'split_lists') to 'reduced_submat_lists'.
 */
void SeparateSubmatsWithLargeCounts(
    const std::vector<int32> &submats_to_separate,
    const std::vector<std::vector<std::pair<int32, int32> > > &submat_lists,
    std::vector<std::vector<std::pair<int32, int32> > > *reduced_submat_lists,
    std::vector<std::vector<std::pair<int32, int32> > > *split_lists) {
  KALDI_ASSERT(split_lists->empty() && !submats_to_separate.empty());
  size_t num_to_separate = submats_to_separate.size(),
      num_rows = submat_lists.size();
  std::unordered_map<int32, size_t> submat_to_index;
  reduced_submat_lists->clear();
  reduced_submat_lists->resize(num_rows);
  split_lists->resize(num_to_separate);
  for (size_t i = 0; i < num_to_separate; i++) {
    (*split_lists)[i].resize(num_rows, std::pair<int32, int32>(-1, -1));
    int32 submat = submats_to_separate[i];
    submat_to_index[submat] = i;
  }
  for (size_t row = 0; row < submat_lists.size(); row++) {
    std::vector<std::pair<int32, int32> >::const_iterator
        iter = submat_lists[row].begin(), end = submat_lists[row].end();
    std::vector<std::pair<int32, int32> >
        &reduced_list = (*reduced_submat_lists)[row];
    // 'reduced_lists' will contain the pairs that don't make it into
    // 'split_lists'.
    for (; iter != end; ++iter) {
      int32 submat_index = iter->first;
      std::unordered_map<int32, size_t>::const_iterator map_iter =
          submat_to_index.find(submat_index);
      if (map_iter == submat_to_index.end()) { // not a large-count submatrix.
        reduced_list.push_back(*iter);
        continue;
      }
      size_t index = map_iter->second;
      std::pair<int32,int32> &p = (*split_lists)[index][row];
      if (p.first >= 0) {
        // we'd only reach here if the same submat index repeated in the same
        // row, which is possible but rare.
        reduced_list.push_back(*iter);
        continue;
      }
      p.first = submat_index;
      int32 src_row_index = iter->second;
      p.second = src_row_index;
    }
  }
}

void SplitLocations(
    const std::vector<std::vector<std::pair<int32, int32> > > &submat_lists,
    std::vector<std::vector<std::pair<int32, int32> > > *split_lists) {
  size_t num_rows = submat_lists.size(),
      num_output_lists = 0;
  auto iter = submat_lists.begin(), end = submat_lists.end();
  for (; iter != end; ++iter)
    if (iter->size() > num_output_lists)
      num_output_lists = iter->size();
  split_lists->clear();
  if (num_output_lists == 0)  // Odd, but could happen, maybe
    return;
  else if (num_output_lists == 1) {
    split_lists->resize(1);
    std::vector<std::pair<int32, int32> > &list = (*split_lists)[0];
    list.resize(num_rows, std::pair<int32, int32>(-1, -1));
    for (size_t i = 0; i < num_rows; i++) {
      if (!submat_lists[i].empty())
        list[i] = submat_lists[i][0];
    }
    return;
  }

  // counts for each submatrix index, of how many times it occurs.
  std::unordered_map<int32,int32> submat_counts;
  std::vector<int32> submats_with_large_counts;
  GetSubmatCounts(submat_lists, &submat_counts, &submats_with_large_counts);
  if (!submats_with_large_counts.empty()) {
    // There are submatrices with counts over half the num-rows.  We assign these
    // their own output lists.

    std::vector<std::vector<std::pair<int32, int32> > > reduced_submat_lists;
    SeparateSubmatsWithLargeCounts(submats_with_large_counts,
                                   submat_lists,
                                   &reduced_submat_lists,
                                   split_lists);
    // 'reduced_split_lists' is the result of recursing with input 'reduced_submat_lists';
    // we'll append its result to 'split_lists'.
    std::vector<std::vector<std::pair<int32, int32> > > reduced_split_lists;
    SplitLocations(reduced_submat_lists, &reduced_split_lists);
    size_t cur_num_lists = split_lists->size(),
        num_extra_lists = reduced_split_lists.size(),
        new_num_lists = cur_num_lists + num_extra_lists;
    split_lists->resize(new_num_lists);
    for (size_t i = 0; i < num_extra_lists; i++)
      (*split_lists)[cur_num_lists + i].swap(reduced_split_lists[i]);
    return;
    // and we're done.
  } else {
    // All the counts of submatrix indexes seem to be small so we are resigned to
    // only using AddRowsMulti commands.
    split_lists->resize(num_output_lists);
    for (size_t i = 0; i < num_output_lists; i++)
      (*split_lists)[i].resize(num_rows, std::pair<int32, int32>(-1, -1));
    for (size_t row = 0; row < num_rows; row++) {
      const std::vector<std::pair<int32, int32> > &this_list =
          submat_lists[row];
      size_t this_list_size = submat_lists[row].size();
      for (size_t i = 0; i < this_list_size; i++) {
        (*split_lists)[i][row] = this_list[i];
      }
    }
  }
}


/* If it is the case for some i >= 0 that all the .first elements of
   "location_vector" are either i or -1, then output i to first_value and the
   .second elements into "second_values", and return true.  Otherwise return
   false and the outputs are don't-cares. */
bool ConvertToIndexes(
    const std::vector<std::pair<int32, int32> > &location_vector,
    int32 *first_value,
    std::vector<int32> *second_values)  {
  *first_value = -1;
  second_values->clear();
  second_values->reserve(location_vector.size());
  std::vector<std::pair<int32, int32> >::const_iterator iter;
  for (iter = location_vector.begin(); iter < location_vector.end(); ++iter)  {
    if (iter->first != -1) {
      if (*first_value == -1)
        *first_value = iter->first;
      if (iter->first != *first_value)
        return false;
      second_values->push_back(iter->second);
    } else  {
      second_values->push_back(-1);
    }
  }
  return true;
}


// see declaration in header for documentation
void EnsureContiguousProperty(
    const std::vector<int32> &indexes,
    std::vector<std::vector<int32> > *indexes_out) {
  indexes_out->clear();
  indexes_out->reserve(3);
  if (indexes.empty()) return;
  int32 max_value = *std::max_element(indexes.begin(), indexes.end());
  if (max_value == -1) return;
  std::vector<int32> num_segments_seen(max_value + 1, 0);
  int32 dim = indexes.size(), num_output_vectors = 0;
  for (int32 i = 0; i < dim;) {
    // note, we increment i within the loop.
    if (indexes[i] == -1) {
      i++;
      continue;
    }
    int32 value = indexes[i], start_index = i;
    for (; i < dim && indexes[i] == value; i++);
    int32 end_index = i;  // one past the end.
    // the input 'indexes' contains a sequence of possibly-repeated instances of
    // the value 'value', starting at index 'start_index', with 'end_index' as
    // one past the end.
    int32 this_num_segments_seen = num_segments_seen[value]++;
    if (this_num_segments_seen >= num_output_vectors) {  // we have nowhere to
                                                         // put it.
      indexes_out->resize(++num_output_vectors);
      indexes_out->back().resize(dim, -1);  // fill newly added vector with -1's.
    }
    std::vector<int32> &this_out_vec((*indexes_out)[this_num_segments_seen]);
    std::vector<int32>::iterator iter = this_out_vec.begin() + start_index,
        end = this_out_vec.begin() + end_index;
    // Fill the appropriate range of the output vector with 'value'
    for (; iter != end; ++iter) *iter = value;
  }
}



/**
   This function splits a vector of pairs into a list of vectors of pairs.
   [note: by 'vector' we mean something that has a meaningful index that we care
   about; by 'list' we mean a collection of elements to be iterated over, without
   (in this case) meaningful indexes or even order.

   @param [in] list   A vector of pairs; these pairs should be either (-1,-1)
                      or (a,b) for a >= 0, b >= 0.  At least one element of 'list'
                      must be different from (-1,-1).
   @param [out] split_lists   A list, in arbitrary order, of vectors of pairs.
                     It has the following relationship with 'list':
                     - Size: for each j, split_lists[j].size() == list.size().
                     - Contents must match input: For each i:
                       -  If list[i] == (-1, -1), then
                          split_lists[j][i] == (-1, -1) for all j.
                       -  If list[i] != (-1, -1), then
                         split_lists[j][i] == (-1, -1) for *all but one* j, and
                         for the remaining j, split_lists[j][i] == list[i].
                     - Uniqueness: for no j should split_lists[j] contain
                       any duplicate elements (except the pair (-1,-1), which  is
                       allowed to exist in duplicate form).
                     To satisfy the above conditions, this function will create
                     as many lists in split_lists (i.e. as many j values) as the
                     number of times that the most frequent pair in 'list'
                     repeats other than the pair (-1,-1), e.g. if the pair
                     (10,11) appears 4 times in 'list' and that is the most,
                     split_lists->size() == 4.
*/
void SplitPairList(std::vector<std::pair<int32, int32> >& list,
                   std::vector<std::vector<std::pair<int32, int32> > >* split_lists) {
  split_lists->clear();
  typedef unordered_map<std::pair<int32, int32>,
                        int32, PairHasher<int32> > MapType;
  // this maps a pair not equal to -1,-1, to the number of times we've already seen it.
  MapType pair_to_count;
  int32 cur_num_lists = 0;

  for (int32 i = 0; i < list.size(); i++)  {
    if (list[i].first == -1)
      continue;
    MapType::iterator iter = pair_to_count.find(list[i]);
    int32 this_count;
    if (iter == pair_to_count.end())
      pair_to_count[list[i]] = this_count = 1;
    else
      this_count = (++iter->second);
    if (this_count > cur_num_lists) {
      KALDI_ASSERT(this_count == cur_num_lists + 1);
      split_lists->resize(this_count);
      split_lists->back().resize(list.size(),
                                 std::pair<int32, int32>(-1, -1));
      cur_num_lists++;
    }
    (*split_lists)[this_count-1][i] = list[i];
  }
  if (split_lists->size() == 0)
    KALDI_ERR << "Input list has just dummy pairs";
}

void SplitLocationsBackward(
    const std::vector<std::vector<std::pair<int32, int32> > > &submat_lists,
    std::vector<std::vector<std::pair<int32, int32> > > *split_lists) {
  std::vector<std::vector<std::pair<int32, int32> > > split_lists_intermediate;
  // Split the submat_lists
  SplitLocations(submat_lists, &split_lists_intermediate);
  for (size_t i = 0; i < split_lists_intermediate.size(); i++) {
    int32 first_value;
    std::vector<int32> second_values;
    if (ConvertToIndexes(split_lists_intermediate[i],
                         &first_value, &second_values)) {
      // the .first values in split_lists_intermediate[i] are all the same (or
      // equal to -1).
      if (first_value == -1) {
        // all the .first values were equal to -1.  this is like a NULL marker.
        continue;
      }
      std::vector<std::vector<int32> > second_values_split;
      EnsureContiguousProperty(second_values, &second_values_split);
      if (second_values_split.size() == 1) {
        // this branch is an optimization for speed.
        split_lists->push_back(split_lists_intermediate[i]);
      } else {
        for (size_t j = 0; j < second_values_split.size(); j++) {
          split_lists->resize(split_lists->size() + 1);
          const std::vector<int32> &input_list = second_values_split[j];
          std::vector<std::pair<int32, int32> > &output_list =
              split_lists->back();
          output_list.resize(input_list.size());
          int32 size = input_list.size();
          for (int32 k = 0; k < size; k++) {
            int32 row = input_list[k];
            if (row == -1) output_list[k].first = -1;
            else output_list[k].first = first_value;
            output_list[k].second = row;
          }
        }
      }
    } else {
      // the .first values are not the same
      // splitting the list of pairs to ensure unique pairs, unless it is
      // (-1,-1)
      std::vector<std::vector<std::pair<int32, int32> > > new_split_lists;
      SplitPairList(split_lists_intermediate[i],
                    &new_split_lists);
      for (int32 j = 0; j < new_split_lists.size(); j++)  {
        split_lists->push_back(new_split_lists[j]);
      }
    }
  }
}

// This function returns true if for each integer i != -1, all the indexes j at
// which indexes[j] == i are consecutive with no gaps (more formally: if j1 < j2
// < j3 and indexes[j1] == indexes[j3], then indexes[j1] == indexes[j2]).  If
// so, it also outputs to "reverse_indexes" the begin and end of these ranges,
// so that indexes[j] == i for all j such that (*reverse_indexes)[i].first <= j
// && j < (*reverse_indexes)[i].second.
bool HasContiguousProperty(
    const std::vector<int32> &indexes,
    std::vector<std::pair<int32, int32> > *reverse_indexes) {
  reverse_indexes->clear();
  int32 num_indexes = indexes.size();
  if (num_indexes == 0)
    return true;
  int32 num_input_indexes =
      *std::max_element(indexes.begin(), indexes.end()) + 1;
  KALDI_ASSERT(num_input_indexes >= 0);
  if (num_input_indexes == 0) {
    // we don't really expect this input, filled with -1's.
    KALDI_WARN << "HasContiguousProperty called on vector of -1's.";
    return true;
  }
  reverse_indexes->resize(num_input_indexes,
                          std::pair<int32,int32>(-1, -1));
  // set each pair's "first" to the min index of all elements
  // of "indexes" with that value, and the "second" to the
  // max plus one.
  for (int32 i = 0; i < num_indexes; i++) {
    int32 j = indexes[i];
    if (j == -1) continue;
    KALDI_ASSERT(j >= 0);
    std::pair<int32, int32> &pair = (*reverse_indexes)[j];
    if (pair.first == -1) {
      pair.first = i;
      pair.second = i + 1;
    } else {
      pair.first = std::min(pair.first, i);
      pair.second = std::max(pair.second, i + 1);
    }
  }
  // check that the contiguous property holds.
  for (int32 i = 0; i < num_input_indexes; i++) {
    std::pair<int32, int32> pair = (*reverse_indexes)[i];
    if (pair.first != -1) {
      for (int32 j = pair.first; j < pair.second; j++)
        if (indexes[j] != i)
          return false;
    }
  }
  return true;
}


// see comment in header.
void GetNxList(const std::vector<Index> &indexes,
               std::vector<std::pair<int32, int32> > *pairs) {
  // set of (n,x) pairs
  std::unordered_set<std::pair<int32, int32>, PairHasher<int32> > n_x_set;

  for (std::vector<Index>::const_iterator iter = indexes.begin();
       iter != indexes.end(); ++iter)
    n_x_set.insert(std::pair<int32, int32>(iter->n, iter->x));
  pairs->clear();
  pairs->reserve(n_x_set.size());
  for (std::unordered_set<std::pair<int32, int32>, PairHasher<int32> >::iterator
           iter = n_x_set.begin(); iter != n_x_set.end(); ++iter)
    pairs->push_back(*iter);
  std::sort(pairs->begin(), pairs->end());
}


// see comment in header.
void GetTList(const std::vector<Index> &indexes,
              std::vector<int32> *t_values) {
  // set of t values
  std::unordered_set<int32> t_set;

  for (std::vector<Index>::const_iterator iter = indexes.begin();
       iter != indexes.end(); ++iter)
    if (iter->t != kNoTime)
      t_set.insert(iter->t);
  t_values->clear();
  t_values->reserve(t_set.size());
  for (std::unordered_set<int32>::iterator iter = t_set.begin();
       iter != t_set.end(); ++iter)
    t_values->push_back(*iter);
  std::sort(t_values->begin(), t_values->end());
}



}  // namespace nnet3
}  // namespace kaldi